

Honeywell 101 Columbia Rd Morristown, NJ 07962

February 4, 2015

Mr. David Doyle, Case Manager New Jersey Department of Environmental Protection Division of Responsible Party Site Remediation 401 East State Street, Mail Code 401-06 Trenton, NJ 08625-0420

RE: Post-Treatment Sampling Results Report Study Area 5 – Site 079 Route 440 Vehicle Corp. Jersey City, Hudson County, NJ NJDEP PI# G000008706

Dear Mr. Doyle:

Honeywell is transmitting one (1) hard copy and three (3) electronic copies of the enclosed Post-Treatment Sampling Results Report for Site 079 Route 440 Vehicle Corp. (Site).

The enclosed report addresses post-remediation monitoring requirements in accordance with the Remedial Action Report (RAR) and Confirmatory Sampling Work Plan (Work Plan) dated September 2011. The RAR documented remedial actions completed at the Site during 2010 including in-situ treatment of hexavalent chromium impacted soils, focused removal of chromium-impacted soils at one location, and implementation of engineering controls (capping) and institutional controls (deed notice). The Work Plan specified post-treatment sampling including soil sampling within the in-situ treatment area and groundwater sampling of shallow monitoring wells.

The remedial actions are also subject to the Consent Decree Regarding Sites 79 and 153 South (Consent Decree). The in-situ treatment activities address requirements of Paragraph 57 of the Consent Decree and the treatment protocol included as Exhibit C of the Consent Decree. The Work Plan was approved by Plaintiffs in a letter dated October 26, 2011 and by the NJDEP on February 21, 2012.

The enclosed report presents results of the post-remediation sampling conducted in accordance with the approved Work Plan. Overall, treatment resulted in the reduction of hexavalent chromium concentrations, as shown in particular at sampling points for which prior data existed, but did not achieve reduction to the NJDEP soil policy guideline of 20 mg/kg at every sampling point. Groundwater sampling results indicate that hexavalent chromium was not detected and total chromium results were non-detect or less than 10 micrograms per liter ( $\mu$ g/L), well below the NJDEP Groundwater Quality Standard of 70  $\mu$ g/L.

While the 20 mg/kg soil criterion may not have been achieved at every sampling point, the overall remedial action was successful as it was effective in further reducing soil concentrations. Moreover, the overall remedial action, consisting of the capping remedy in conjunction with the treatment, has been and continues to be fully protective since its implementation in 2010.

As indicated in the enclosed report, no further post-remediation soil or groundwater sampling is recommended, based on the remedial actions completed and post-treatment sampling results. The existing engineering controls and deed notice will remain in place. Post-remediation cap inspections, submittal of remedial action protectiveness certification biennial reports and other applicable

February 4, 2015 Mr. David Doyle - New Jersey Department of Environmental Protection Post-Treatment Sampling Results Report Study Area 5 – Site 079 Route 440 Vehicle Corp. Page 2 of 2

requirements will continue under the existing Deed Notice, Remedial Action Soil Permit, and Long-Term Monitoring Plan.

Honeywell is submitting the enclosed document for NJDEP review and approval with respect to post-treatment sampling requirements and above-referenced recommendations.

If you have any questions, please call me at 973-455-3302.

Sincerely,

maria Karris

Maria Kaouris Remediation Manager

Enclosure: Post-Treatment Sampling Results Report – Site 079 Route 440 Vehicle Corp. (1 hard copy and 3 electronic copies)

Joe Clifford - Amec Foster Wheeler (electronic copy) cc: Michael Daneker – Arnold & Porter LLP Jeremy Karpatkin – Arnold & Porter LLP (electronic copy) Robert Ciasulli – Bob Ciasulli Auto Group (electronic copy) Dr. Bruce Bell – Carpenter Environmental Associates, Inc. (electronic copy) Kim Hosea - Carpenter Environmental Associates, Inc. Dr. Benjamin Ross - Disposal Safety, Inc. Tom Byrne – Honeywell (electronic copy) William Hague – Honeywell (electronic copy) John Morris – Honeywell (electronic copy) Thomas Cozzi – NJDEP (electronic copy) Alicia Clark Alcorn - Terris, Pravlik & Millian, LLP Kathleen Millian – Terris, Pravlik & Millian, LLP (electronic copy) Carolyn Smith-Pravlik – Terris, Pravlik & Millian, LLP (electronic copy) Bruce Terris – Terris, Pravlik & Millian, LLP (electronic copy) Resa Drasin - Woehling & Freeman Robert Woehling – Woehling & Freeman (electronic copy)

## POST-TREATMENT SAMPLING RESULTS REPORT

## HUDSON COUNTY CHROMATE SITE 079 ROUTE 440 VEHICLE CORP. JERSEY CITY, NEW JERSEY NJDEP PI#G000008706

Prepared for



101 Columbia Road Morristown, New Jersey 07962

Prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. 200 American Metro Boulevard, Suite 113 Hamilton, New Jersey 08619



**FEBRUARY 2015** 

## TABLE OF CONTENTS

| 1.0 | INTI | RODUCTION                             | 1  |
|-----|------|---------------------------------------|----|
|     | 1.1  | Purpose and Scope                     | 1  |
|     | 1.2  | Report Organization                   | 2  |
| 2.0 | SITE | E BACKGROUND                          | 3  |
|     | 2.1  | Site Location and Description         | 3  |
|     | 2.2  | In-Situ Treatment Program Summary     | 4  |
| 3.0 | POS' | T-TREATMENT SAMPLING FIELD ACTIVITIES | 5  |
|     | 3.1  | Field Mobilization                    | 5  |
|     | 3.2  | Soil Borings and Sampling             | 5  |
|     | 3.3  | Groundwater Sampling                  | 6  |
| 4.0 | POS' | T-TREATMENT SAMPLING RESULTS          | 7  |
|     | 4.1  | Soil Sampling Results                 | 7  |
|     | 4.2  | Groundwater Sampling Results          | 7  |
|     | 4.3  | Data Usability                        |    |
| 5.0 | FINI | DINGS AND RECOMMENDATIONS             | 10 |
| 6.0 | REF  | ERENCES                               | 12 |
| 7.0 | LIST | OF ACRONYMS AND ABBREVIATIONS         | 13 |
|     |      |                                       |    |

### TABLES

| Post-Treatment Sampling Program                               |
|---------------------------------------------------------------|
| Post-Treatment Soil Sample Results                            |
| Comparison of Co-Located RI and Post Treatment Sample Results |
| Groundwater Sample Results                                    |
|                                                               |

## FIGURES

| Figure 1 | Site Location Map                                                  |
|----------|--------------------------------------------------------------------|
| Figure 2 | Post-Treatment and Remedial Investigation Soil Sampling Results    |
| Figure 3 | Historical Groundwater Sampling Results                            |
| Figure 4 | Geochemical Conditions and Cr(VI) Concentrations                   |
| Figure 5 | Geochemical Conditions, Cr(VI) Concentrations and Residual Sulfide |

### Honeywell

#### **APPENDICES**

- Appendix A Relevant Correspondence
- Appendix B Soil Boring Logs
- Appendix C Groundwater Sampling Field Logs
- Appendix D Laboratory Data/Electronic Deliverables (compact disk)
- Appendix E Data Validation Reports (compact disk)

Π

## **1.0 INTRODUCTION**

### 1.1 PURPOSE AND SCOPE

This Post-Treatment Sampling Results Report (Report) was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) on behalf of Honeywell to address post-remediation monitoring requirements for Site 079 Route 440 Vehicle Corp. in Jersey City, New Jersey (Site).

Remedial actions were completed during 2010 and consisted of in-situ treatment of hexavalent chromium impacted soils by direct injection of calcium polysulfide and focused removal of isolated impacted soils. The remedial actions were documented in a Remedial Action Report (RAR) and Confirmatory Sampling Work Plan dated September 2011 (Amec, 2011). The RAR presented the results of the remedial actions and contained a Post-Remediation Monitoring Plan for soil and groundwater sampling in the area where in-situ treatment of hexavalent chromium impacted soils was performed. The New Jersey Department of Environmental Protection (NJDEP) approved the RAR and Confirmatory Sampling Work Plan (Work Plan) in a letter dated February 21, 2012 (**Appendix A**). (NJDEP approved a remedy based on containment without treatment). This report presents results of the postremediation sampling conducted in accordance with the approved Work Plan.

In addition to the approved Work Plan, remedial actions are governed by an Administrative Consent Order between Honeywell (formerly Allied Signal, Inc.) and the NJDEP dated June 17, 1993 (as modified by the Consent Judgment between the NJDEP et al. and Honeywell et al., dated September 7, 2011), the New Jersey Technical Requirements for Site Remediation (N.J.A.C. 7:26E), the NJDEP's Chromium Policy Directive (Memorandum dated February 8, 2007), and the Consent Decree Regarding Sites 079 and 153 South between the Hackensack Riverkeeper Inc. (Riverkeeper or Plaintiffs), Honeywell, the Bayonne Municipal Utilities Authority, and Robert G. Ciasulli dated January 21, 2010 (Consent Decree). The insitu treatment activities address requirements of Paragraph 57 of the Consent Decree and the treatment protocol included as Exhibit C of the Consent Decree.

The Work Plan was approved by Plaintiffs in a letter dated October 26, 2011 and by the NJDEP on February 21, 2012.

## 1.2 REPORT ORGANIZATION

This document organized into the following sections:

- *Site Background*. This section contains information on Site location and summary of the in-situ treatment work completed in 2010.
- *Post-Treatment Sampling Field Activities*. This section presents a summary of the post-treatment field sampling activities.
- *Post-Treatment Sampling Results*. This section presents results of the post-treatment sampling program.
- *Findings/Recommendations*. This section presents a summary of findings and recommendations.
- *References.* This section presents a list of references used in this report.
- *List of Acronyms and Abbreviations*. This section contains a list of acronyms and abbreviations used in this report.

## 2.0 SITE BACKGROUND

## 2.1 SITE LOCATION AND DESCRIPTION

Site 079 (Route 440 Vehicle Corp.) is located at 540 Route 440 North in Jersey City, New Jersey. A Site location map is included as **Figure 1**.

The Site is currently occupied by a Honda automobile dealership facility known as Metro Honda. The Site property consists of two separate lots:

- Block 22001, Lot 4 (formerly Block 1291, Lot 76): the main car dealership facility including one building and vehicle parking area between Route 440 and the dealership building (front parking lot) and a vehicle parking area between the dealership building and Martorano Way (rear parking lot).
- Block 22001, Lot 3 (formerly Block 1292, Lot 56): vehicle storage lot on the east side of Mortorano Way.

Remediation of hexavalent chromium contaminated soils was conducted in 2010 in accordance with the NJDEP-approved Remedial Action Work Plan (RAWP). The insitu treatment was conducted within the front parking lot area between the car dealership building and Route 440, which comprises an area of approximately 18,000 square feet (0.4 acres) within Block 22001, Lot 4. The NJDEP issued a Remedial Action Soil Permit on May 4, 2012 and a No Further Action (NFA) approval letter dated May 7, 2012.

As part of the remedial actions, a Deed Notice was recorded on April 29, 2010 to address hexavalent chromium in soils exceeding the NJDEP soil policy guideline of 20 milligrams per kilogram (mg/kg) beneath the pavement in the area between the car dealership building and Route 440. A new Deed Notice was recorded on June 25, 2013 which reflects current block and lot information, current NJDEP model deed notice format, and the completed remedial actions. The asphalt pavement serves as the engineering control (cap) in accordance with the NJDEP approved RAWP and the Consent Decree. The Deed Notice restricts land use within the capped area to commercial, retail, or open space, including continued use as an automobile dealership.

### 2.2 IN-SITU TREATMENT PROGRAM SUMMARY

The In-Situ Treatment Program (ITP) was completed at the Site during October 2010 in accordance with the following documents:

- In-Situ Treatment Protocol (Exhibit C of the Consent Decree).
- Remedial Action Work Plan dated July 2009, approved by the NJDEP on September 30, 2010.
- NJDEP Discharge to Groundwater Permit Request and In-Situ Chemical Reduction Injection Treatment Program Field Implementation Work Plan dated July 2010, approved by the NJDEP on July 28, 2010.

The ITP field work included injection of calcium polysulfide (CAPS) solution during two weekend work cycles (from Saturday evening through Monday morning). The overall treatment program included 56 injection points and injection of a total of 33,000 gallons of CAPS solution (or 16,000 gallons of undiluted 29% CAPS). Locations of injection points are shown on **Figure 2**. For details and documentation regarding the ITP field work, refer to the September 2011 RAR (Amec, 2011).

Following completion of the ITP field work, the entire parking lot area between the car dealership building and Route 440 was milled and resurfaced with new asphalt pavement.

## 3.0 POST-TREATMENT SAMPLING FIELD ACTIVITIES

This section describes the post-treatment sampling field activities including field mobilization, soil borings and sampling, and groundwater sampling. In accordance with the timeframe prescribed in the RAR, field work was completed during July and August 2014. The post-treatment sampling program is presented on **Table 1**.

## 3.1 FIELD MOBILIZATION

Pre-sampling field mobilization activities included utility mark-out and notification to the NJDEP regarding disturbance to the engineering control (pavement cap) in accordance with Deed Notice requirements.

Prior to completion of soil borings, underground utilities were marked out using the public utility mark-out system (New Jersey One-Call). As part of the utility mark-out task, a geophysical survey was conducted by TPI Environmental on July 23, 2014, to verify locations of underground utilities and/or obstructions in the area of targeted soil boring locations. The utility mark-out and geophysical survey included the use of ground penetrating radar at each soil boring location, review of utility mark-outs and meeting with the site facility manager to check locations of underground utilities.

Notification of the disturbance to the engineering control was made to the NJDEP hotline on August 18, 2014 by Amec Foster Wheeler on behalf of Honeywell (NJDEP incident number 14-08-18-1002-46). In accordance with the deed notice, documentation regarding disturbance and restoration of the engineering control will be included with the next Remedial Action Protectiveness / Biennial Certification Report to be submitted by May 4, 2016 in accordance with the schedule in the Remedial Action Soil Permit.

## 3.2 SOIL BORINGS AND SAMPLING

The scope of work for post-treatment soil sampling included 22 soil borings, including 12 borings specified in Exhibit C of the Consent Decree (Outline for In-Situ Treatment of Chromium Impacted Soils) and 10 borings added as requested by Plaintiffs to provide additional confirmation at areas where a lower injection solution dilution rate was used and in the area along the 138 kilovolt underground transmission line. Soil borings were completed from August 18 through August 21, 2014 by TPI Environmental. All borings were located by Global Positioning System equipment prior to sampling. Each boring was advanced to 9 feet below grade and did not penetrate the meadow mat. Soil sampling included collection of discrete samples (6inch intervals) at 1-foot depth intervals between 3 feet and 9 feet below ground surface (bgs), corresponding to the treatment interval. Soil boring logs are provided in **Appendix B**.

A total of 132 samples were collected from 22 soil boring locations. Soil samples were submitted to Accutest Laboratories of Dayton, New Jersey for analysis of hexavalent chromium and sulfide. The sulfide data was collected to evaluate potential hexavalent chromium data qualification or rejection and determine whether reducing conditions were naturally occurring or attributable to persistence of the injected CAPS.

#### 3.3 GROUNDWATER SAMPLING

In accordance with the RAR and Work Plan, post-injection groundwater samples were collected from groundwater monitoring wells 079-MW-001 and 079-MW-A02 on July 24, 2014. Groundwater field sampling logs are provided in **Appendix C**. The samples were collected using low-flow purging/sampling methods and submitted to Accutest Laboratories of Dayton, New Jersey for analysis of filtered and unfiltered total chromium and hexavalent chromium.

### Honeywell

## 4.0 POST-TREATMENT SAMPLING RESULTS

### 4.1 SOIL SAMPLING RESULTS

Post-treatment soil sample results are presented on **Table 2** and **Figure 2**. Concentrations of hexavalent chromium were below the NJDEP soil criteria of 20 mg/kg at 5 of the 22 soil boring locations. Of the remaining 17 locations, most of the hexavalent chromium concentrations ranged from 20 mg/kg to 150 mg/kg. Samples from two soil boring locations had results greater than 150 mg/kg: 079-SB-218 (256 mg/kg at 5-6 feet bgs) and 079-SB-219 (3,580 mg/kg at 6-7 feet bgs; 4,150 mg/kg at 7-8 feet bgs). (It is evident from the data that these detections represent a limited, isolated volume of higher strength material. The residual reductant left behind by treatment coupled with the measured site-wide ambient reductive conditions will continue to convert hexavalent chromium to trivalent chromium and mitigate the potential for migration.)

Ten of the 22 soil borings were co-located with previous remedial investigation (RI) borings. Previous RI soil sample results are also shown for reference on **Figure 2**. Comparison of hexavalent chromium concentrations in co-located samples (38 samples total) and percent reduction information are presented in **Table 3**.

Of the 10 soil borings co-located with previous RI borings, hexavalent chromium reductions were observed in the majority of samples with a wide range of percent reduction (less than 10% to greater than 90% reduction). Twenty-one of the 38 co-located samples had greater than 50% reduction in hexavalent chromium concentrations.

Geochemical data (Eh and pH) collected with the samples along with hexavalent chromium concentrations and residual sulfide was plotted for evaluation of geochemical conditions, and is presented on **Figures 4 and 5**. Refer to Section 5 for further data evaluation and summary of findings.

## 4.2 GROUNDWATER SAMPLING RESULTS

Post-treatment groundwater sampling results are presented on **Table 4** and shown on **Figure 3**. Groundwater sampling results indicate that hexavalent chromium was not detected. Total chromium results were non-detect or less than 10 micrograms per liter (µg/L), well below the NJDEP Groundwater Quality Standard of 70 µg/L. Historical groundwater sampling results are included for reference on **Figure 3.** Groundwater field measurements indicate neutral pH (6.8 to 7.5), negative redox levels (-189 to -382 millivolts [mV]), and very low to no dissolved oxygen; these data indicate reducing conditions within the shallow fill zone.

## 4.3 DATA USABILITY

Laboratory analytical data was validated to document compliance with quality assurance/quality control requirements for the selected analytical methods. Data validation was conducted in accordance with NJDEP protocols by Validata, LLC for 100% of the samples analyzed for total chromium and hexavalent chromium using the following guidance documents:

- NJDEP, 2002. Standard Operating Procedure (SOP) entitled Quality Assurance Data Validation of Analytical Deliverables for Inorganics (based on United States Environmental Protection Agency [EPA] SW-846 Methods), SOP No. 5.A.16. Trenton, New Jersey.
- NJDEP, 2001. Standard Operating Procedure for the Completion of the Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.15, Trenton, New Jersey.
- NJDEP, 2005. Standard Operating Procedure for Analytical Data Validation of Hexavalent Chromium, SOP No. 5.A.10, Revision 2, Trenton, New Jersey.
- NJDEP, 2001. Standard Operating Procedure for the Completion of the Hexavalent Chromium Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.09 Trenton, New Jersey.

Laboratory data reports and electronic data deliverables are provided on compact disk in **Appendix D**. Copies of data validation reports are provided on compact disk in **Appendix E**.

Data validation results indicate that soil and groundwater data are acceptable for use with minor qualifications, mainly related to some sample results being qualified as estimated. Data qualifications are summarized as follows:

- Total chromium results in some soil samples were qualified as estimated due to low matrix spike recovery, elevated matrix spike duplicate recovery, or serial dilution precision exceedances.
- Hexavalent chromium results in some soil samples were qualified as estimated due to elevated matrix spike recovery or laboratory duplicate precision exceedance.
- Sulfide results in some soil samples were qualified as estimated due to low matrix spike recovery.
- Hexavalent chromium groundwater sample results in two of the filtered samples (079-MW-A02-072414-F, 079-MW-A02-072414DP-F) were qualified as estimated due to holding time exceedance.

Based on review of data and validation results, the soil and groundwater data is usable as qualified and is acceptable for use in evaluation of post-treatment conditions. The data qualifications do not have a negative impact on overall project objectives.

### Honeywell

## 5.0 FINDINGS AND RECOMMENDATIONS

This section presents findings and recommendations based on the sampling results.

#### Findings

The post-treatment soil sampling analytical results indicate that reduction of hexavalent chromium has occurred across the Site. In the majority of the co-located samples there was a reduction of hexavalent chromium concentrations, as much as over 90%. Residual sulfide concentrations above the reporting limit are present in at least 40% of the samples. The NJDEP soil policy guideline of 20 mg/kg for chromium was not attained in all areas. There is no defined spatial distribution of the results, perhaps due the variability of the historic fill and the variability of pre-treatment hexavalent chromium concentrations.

The geochemical data (Eh and pH) collected with the samples (see **Figure 4**) show that the overall Site geochemical conditions favor reduction of hexavalent chromium to trivalent chromium. Almost all samples with hexavalent chromium concentrations above 20 mg/kg are located in soils where the geochemical conditions favor the conversion of hexavalent to trivalent chromium. This suggests that additional reduction of hexavalent chromium concentrations should be expected. For some of the samples, data indicate that sulfide is still present and the electron source provided by the injection of calcium polysulfide is still available to support further hexavalent chromium reduction (see **Figure 5**). In the cases where sulfide concentrations were below the laboratory reporting limit, additional reduction is expected to proceed by utilizing electron donors already present in the historic fill.

Data indicate only two locations where hexavalent chromium concentrations exist under oxidative conditions (at samples 079-219-0607 and 079-219-0708). The elevated concentration of hexavalent chromium and high pH indicate that chromite ore processing residue may be present at this location. There are no pretreatment data corresponding to these samples, so the efficacy of treatment cannot be assessed. Even then, these points are only slightly into the oxidizing geochemical region, suggesting that conditions are transitional rather than aggressively oxidizing and strongly favoring the stability of hexavalent chromium. However, high concentrations of sulfide remain at this location, suggesting that further reduction of hexavalent chromium could occur over time.

February 2015

#### Honeywell

In conclusion, data from the post-treatment sampling program shows that the ITP resulted in the reduction of hexavalent chromium concentrations, but did not achieve reduction to below 20 mg/kg at every sampling point. The reductions are best demonstrated by the co-located samples which provide a good basis of comparison in terms of treatment effectiveness, because of the existing pretreatment data. For the majority of those samples, there was a reduction of hexavalent chromium concentrations, of as much as 90% or greater. Therefore, although the treatment did not result in the attainment of the 20 mg/kg hexavalent chromium criterion at every sampling point, it resulted in concentrations, and was successful. Moreover, the overall remedial action has been and continues to be fully protective based on the current land use.

#### Recommendations

Because the remedial action is considered successful and protective under the existing land use, no further post-remediation soil or groundwater sampling is recommended at this time. (Moreover, paragraph 57 of the Consent Decree establishes that Honeywell has no further treatment or sampling obligations beyond those conducted as part of the remedial action in 2010.) The existing engineering controls and Deed Notice will remain in place. Post-remediation cap inspections, submittal of remedial action protectiveness certification biennial reports, and other applicable post-remediation monitoring and reporting requirements will continue under the existing Deed Notice, Remedial Action Soil Permit, and Long-Term Monitoring Plan for the Site.

## 6.0 REFERENCES

- Amec, 2011; Remedial Action Report and Confirmatory Sampling Work Plan, Site 079 Route 440 Vehicle Corp. September 2012.
- Amec, 2010; Discharge to Groundwater Permit Request and In-Situ Chemical Reduction Injection Treatment Program Field Implementation Work Plan. July 2010.
- Amec, 2009; Remedial Action Work Plan, Site 079 Route 440 Vehicle Corp. July 2009.
- EPA, 2000; In Situ Treatment of Soil and Groundwater Contaminated with Chromium, EPA/625/R-00/005, October 2000.
- NJDEP, 2012; Letter Correspondence re: Approval of Remedial Action Report and Confirmatory Sampling Work Plan, Site 079 Route 440 Vehicle Corp. Letter dated February 21, 2012.

## 7.0 LIST OF ACRONYMS AND ABBREVIATIONS

| bgs      | Below Ground Surface                              |
|----------|---------------------------------------------------|
| CAPS     | Calcium Polysulfide                               |
| Cr(VI)   | Hexavalent Chromium                               |
| EPA      | United States Environmental Protection Agency     |
| ITP      | In-Situ Treatment Program                         |
| mg/kg    | milligrams per kilogram                           |
| μg/L     | micrograms per liter                              |
| NFA      | No Further Action                                 |
| N.J.A.C. | New Jersey Administrative Code                    |
| NJDEP    | New Jersey Department of Environmental Protection |
| RAR      | Remedial Action Report                            |
| RAWP     | Remedial Action Work Plan                         |
| RI       | Remedial Investigation                            |
| SOP      | Standard Operating Procedure                      |

TABLES

# TABLE 1Post-Treatment Sampling ProgramStudy Area 5 - NJDEP Site 079 Route 440 Vehicle Corp.Jersey City, New Jersey

| Activity                        | Soil Boring or Well<br>ID | Number of<br>Samples | Sampling Date | Sampling<br>Method | Matrix       | Sampling Interval  | Analytical<br>Parameters |  |
|---------------------------------|---------------------------|----------------------|---------------|--------------------|--------------|--------------------|--------------------------|--|
|                                 | 079-SB-201                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-202                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-203                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-204                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-205                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-206                | 6                    | 8/21/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-207                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-208                | 6                    | 8/21/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-209                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
| Post-Treatment Soil<br>Sampling | 079-SB-210                | 6                    | 8/19/2014     |                    |              | Six 1 fact complex | Hovevalant               |  |
|                                 | 079-SB-211                | 6                    | 8/19/2014     | Geoprobe           | Soil         | Six 1-1001 Samples |                          |  |
|                                 | 079-SB-212                | 6                    | 8/18/2014     | Macro-Core         | 3011         | 9 ft below grade   | sulfide                  |  |
|                                 | 079-SB-213                | 6                    | 8/19/2014     |                    |              | 3 It below grade   | Sunde                    |  |
|                                 | 079-SB-214                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-215                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-216                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-217                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-218                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-219                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-220                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
| Post-Treatment                  | 079-SB-221                | 6                    | 8/19/2014     |                    |              |                    |                          |  |
|                                 | 079-SB-222                | 6                    | 8/18/2014     |                    |              |                    |                          |  |
|                                 | 079MW-001                 | 2                    | 7/24/2014     | Low-flow           | Groundwater  | Mid-scroop         | Filtered and unfiltered  |  |
| Sampling                        | 079-MW-A02                | 2                    | 7/24/2014     | LOW-IIOW           | Groundwaller | Mid-Scieen         | Eh                       |  |

#### Notes:

1. Borings were not advanced below the existing meadow mat or organic clay stratum.

2. Quality assurance/quality control (QA/QC) samples were collected at a rate of 5% of the total number of soil; and field blank samples at a rate of one per sample event.

3. Laboratory analytical results were reported using NJDEP Regulatory Format II. Full Laboratory Data Deliverables - Non-USEPA/CLP Methods.

| Location                   |        |        |           |        |           |              |           | 079-SB | -201      |        |     |           |   |         |     |
|----------------------------|--------|--------|-----------|--------|-----------|--------------|-----------|--------|-----------|--------|-----|-----------|---|---------|-----|
| Sample Date                |        | 8/18/2 | 8/18/2014 |        | 8/18/2014 |              | 8/18/2014 |        | 8/18/2014 |        | )14 | 8/18/2014 |   | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 ft |           | 4-5 ft |           | 4-5 ft (DUP) |           | 5-6 ft |           | 6-7 ft |     | 7-8 ft    |   | 8-9 ft  |     |
| Parameter Name             | RDCSRS | CONC   | Q         | CONC   | Q         | CONC         | Q         | CONC   | Q         | CONC   | Q   | CONC      | Q | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS     |           | NS     |           | NS           |           | NS     |           | NS     |     | NS        |   | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.45   | UJ        | 10     |           | 20.3         | J         | 1.8    |           | 5.8    |     | 4.3       | J | 1.3     | J   |
| REDOX POTENTIAL (mV)       | -      | 203    |           | 233    |           | 253          |           | 217    |           | 218    |     | 228       |   | 217     |     |
| pH (S.U.)                  | -      | 7.75   |           | 7.11   |           | 7.26         |           | 8.05   |           | 7.41   |     | 7.26      |   | 7.9     |     |
| SOLIDS, PERCENT            | -      | 91.3   |           | 83.3   |           | 70.4         |           | 91.9   |           | 82.6   |     | 83.1      |   | 75.5    |     |
| SULFIDE (mg/kg)            | -      | 16.5   |           | 31.3   |           | 17.2         |           | 13.9   |           | 15.5   |     | 15.4      |   | 16      |     |

| Location                   |        |           |   |         |           |      |           | 079-SB | -202      |      |     |           |   |         |     |
|----------------------------|--------|-----------|---|---------|-----------|------|-----------|--------|-----------|------|-----|-----------|---|---------|-----|
| Sample Date                |        | 8/18/2014 |   | 8/18/20 | 8/18/2014 |      | 8/18/2014 |        | 8/18/2014 |      | 014 | 8/18/2014 |   | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 ft    |   | 4-5 f   | 4-5 ft    |      | 5-6 ft    |        | 6-7 ft    |      | UP) | 7-8 ft    |   | 8-9 ft  |     |
| Parameter Name             | RDCSRS | CONC      | Q | CONC    | Q         | CONC | Ø         | CONC   | Q         | CONC | Q   | CONC      | Ø | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS        |   | NS      |           | NS   |           | NS     |           | NS   |     | NS        |   | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1.4       | J | 0.66    | J         | 8.3  |           | 7.1    | J         | 8.7  | J   | 9.2       |   | 16.6    | J   |
| REDOX POTENTIAL (mV)       | -      | 220       |   | 209     |           | 193  |           | 314    |           | 318  |     | 326       |   | 276     |     |
| pH (S.U>)                  | -      | 7.62      |   | 7.59    |           | 7.11 |           | 7.22   |           | 7.53 |     | 7.06      |   | 7.5     |     |
| SOLIDS, PERCENT            | -      | 73.9      |   | 74.6    |           | 80.4 |           | 84.6   |           | 85.6 |     | 83.4      |   | 83.2    |     |
| SULFIDE (mg/kg)            | -      | 4.2       | U | 4.2     | U         | 3.8  | U         | 3.8    | U         | 11.6 |     | 3.6       | U | 5       | U   |

| Location                   |        |           |   |         |           |      |           | 079-SB | -203         |      |     |           |   |         |     |
|----------------------------|--------|-----------|---|---------|-----------|------|-----------|--------|--------------|------|-----|-----------|---|---------|-----|
| Sample Date                |        | 8/18/2014 |   | 8/18/20 | 8/18/2014 |      | 8/18/2014 |        | 8/18/2014    |      | 014 | 8/18/2014 |   | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 ft    |   | 4-5 f   | 4-5 ft    |      | 5-6 ft    |        | 5-6 ft (DUP) |      | ť   | 7-8 ft    |   | 8-9 ft  |     |
| Parameter Name             | RDCSRS | CONC      | Q | CONC    | Q         | CONC | Q         | CONC   | Q            | CONC | Q   | CONC      | Q | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS        |   | NS      |           | NS   |           | NS     |              | NS   |     | NS        |   | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1.4       |   | 9.7     | J         | 20.1 | J         | 29.8   | J            | 2.7  | J   | 17.3      | J | 17.8    | J   |
| REDOX POTENTIAL (mV)       | -      | 340       |   | 400     |           | 295  |           | 301    |              | 257  |     | 270       |   | 314     |     |
| pH (S.U>)                  | -      | 8.59      |   | 6.53    |           | 6.15 |           | 6.9    |              | 7.66 |     | 8.09      |   | 7.44    |     |
| SOLIDS, PERCENT            | -      | 92.8      |   | 89.5    |           | 47.8 |           | 60.4   |              | 80.9 |     | 83.7      |   | 80.5    |     |
| SULFIDE (mg/kg)            | -      | 3.5       | U | 3.5     | U         | 6.7  | U         | 5.1    | U            | 4.1  |     | 3.8       | U | 3.9     | U   |

| Location                   |        | 079-SB-204 |        |        |           |      |           |      |           |      |           |        |     |         |     |
|----------------------------|--------|------------|--------|--------|-----------|------|-----------|------|-----------|------|-----------|--------|-----|---------|-----|
| Sample Date                |        | 8/19/20    | 014    | 8/19/2 | 8/19/2014 |      | 8/19/2014 |      | 8/19/2014 |      | 8/19/2014 |        | 014 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 1      | 3-4 ft |        | 4-5 ft    |      | 5-6 ft    |      | 6-7 ft    |      | UP)       | 7-8 ft |     | 8-9 ft  |     |
| Parameter Name             | RDCSRS | CONC       | Q      | CONC   | Q         | CONC | Q         | CONC | Q         | CONC | Q         | CONC   | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 31.7       | J      | 67.4   | J         | 2900 | J         | 461  | J         | 636  | J         | 386    | J   | 206     | J   |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1.8        |        | 2.3    |           | 10.9 |           | 22.4 |           | 37.7 |           | 17.3   |     | 16.6    |     |
| REDOX POTENTIAL (mV)       | -      | 262        |        | 265    |           | 254  |           | 222  |           | 299  |           | 271    |     | 335     |     |
| pH (S.U>)                  | -      | 8.18       |        | 8.19   |           | 7.76 |           | 7.6  |           | 7.64 |           | 7      |     | 5.97    |     |
| SOLIDS, PERCENT            | -      | 90.5       |        | 88     |           | 74.7 |           | 82.6 |           | 81.8 |           | 82.8   |     | 83.7    |     |
| SULFIDE (mg/kg)            | -      | 5.5        | J      | 4.5    | UJ        | 14.7 | J         | 4.8  | UJ        | 4.8  | U         | 4.8    | UJ  | 4.7     | UJ  |

| Location                   |        | 079-SB-205 |     |         |     |         |           |      |        |         |        |         |     |  |  |
|----------------------------|--------|------------|-----|---------|-----|---------|-----------|------|--------|---------|--------|---------|-----|--|--|
| Sample Date                |        | 8/19/2     | 014 | 8/19/20 | 014 | 8/19/20 | 8/19/2014 |      | )14    | 8/19/20 | )14    | 8/19/20 | 014 |  |  |
| Sample Depth               |        | 3-4 ft     |     | 4-5 f   | t   | 5-6 f   | 5-6 ft    |      | 6-7 ft |         | 7-8 ft |         | ft  |  |  |
| Parameter Name             | RDCSRS | CONC       | Q   | CONC    | Q   | CONC    | Q         | CONC | Q      | CONC    | Q      | CONC    | Q   |  |  |
| CHROMIUM (mg/kg)           | -      | 87.3       | J   | 993     | J   | 1470    | J         | 7090 | J      | 33200   | J      | 7850    | J   |  |  |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 18         |     | 0.51    |     | 71.6    |           | 1.8  |        | 5.2     |        | 1       |     |  |  |
| REDOX POTENTIAL (mV)       | -      | 307        |     | 275     |     | 231     |           | 169  |        | -39.5   |        | -8.8    |     |  |  |
| pH (S.U>)                  | -      | 7.54       |     | 7.8     |     | 7.68    |           | 8.15 |        | 8.84    |        | 8.45    |     |  |  |
| SOLIDS, PERCENT            | -      | 78         |     | 81.4    |     | 86.3    |           | 64.9 |        | 37.1    |        | 41.2    |     |  |  |
| SULFIDE (mg/kg)            | -      | 5.1        | U   | 4.9     | U   | 4.6     | U         | 6    | U      | 32.2    |        | 72.7    |     |  |  |

| Location                   |        |        |           |       |           | C      | )79-S     | B-206  |     |           |   |           |   |
|----------------------------|--------|--------|-----------|-------|-----------|--------|-----------|--------|-----|-----------|---|-----------|---|
| Sample Date                |        | 8/21/2 | 8/21/2014 |       | 8/21/2014 |        | 8/21/2014 |        | 014 | 8/21/2014 |   | 8/21/2014 |   |
| Sample Depth               |        | 3-4 1  | ft        | 4-5 f | ť         | 5-6 ft |           | 6-7 ft |     | 7-8 ft    |   | 8-9 ft    |   |
| Parameter Name             | RDCSRS | CONC   | Q         | CONC  | Q         | CONC   | Q         | CONC   | Q   | CONC      | Q | CONC      | Q |
| CHROMIUM (mg/kg)           | -      | 28.1   | J         | 105   | J         | 535    | J         | 2490   | J   | 1910      | J | 1060      | J |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 2.4    | J         | 8.4   | J         | 10.3   | J         | 47.4   | J   | 124       | J | 27.8      | J |
| REDOX POTENTIAL (mV)       | -      | 375    |           | 344   |           | 325    |           | 337    |     | 328       |   | 327       |   |
| pH (S.U>)                  | -      | 7.05   |           | 8.01  |           | 7.53   |           | 8.33   |     | 8.54      |   | 8.45      |   |
| SOLIDS, PERCENT            | -      | 83.7   |           | 87.5  |           | 81.5   |           | 74.6   |     | 79.5      |   | 68.4      |   |
| SULFIDE (mg/kg)            | -      | 4.8    | U         | 4.6   | U         | 4.9    | U         | 5.4    | U   | 5         | U | 5.8       | U |

| Location                   |        | 079-SB-207 |     |         |     |        |           |        |           |        |     |        |     |  |  |
|----------------------------|--------|------------|-----|---------|-----|--------|-----------|--------|-----------|--------|-----|--------|-----|--|--|
| Sample Date                |        | 8/19/2     | 014 | 8/19/20 | 014 | 8/19/2 | 8/19/2014 |        | 8/19/2014 |        | 014 | 8/19/2 | 014 |  |  |
| Sample Depth               |        | 3-4 1      | ft  | 4-5 f   | t   | 5-6 ft |           | 6-7 ft |           | 7-8 ft |     | 8-9 ft |     |  |  |
| Parameter Name             | RDCSRS | CONC       | Q   | CONC    | Q   | CONC   | Q         | CONC   | Q         | CONC   | Q   | CONC   | Q   |  |  |
| CHROMIUM (mg/kg)           | -      | 32.9       | J   | 120     | J   | 5900   | J         | 6390   | J         | 20100  | J   | 3440   | J   |  |  |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 2.5        |     | 0.98    | U   | 80.4   |           | 11     |           | 0.64   | U   | 127    |     |  |  |
| REDOX POTENTIAL (mV)       | -      | 234        |     | 239     |     | 230    |           | 237    |           | 208    |     | 238    |     |  |  |
| pH (S.U>)                  | -      | 8.21       |     | 7.46    |     | 8.19   |           | 7.84   |           | 8.45   |     | 8.15   |     |  |  |
| SOLIDS, PERCENT            | -      | 81.2       |     | 42.4    |     | 70.9   |           | 61.9   |           | 64.7   |     | 67.6   |     |  |  |
| SULFIDE (mg/kg)            | -      | 4.9        | U   | 46.5    |     | 5.6    | U         | 7      | U         | 6.2    |     | 5.9    | U   |  |  |

| Location                   |        |          |     |         |     | 0       | 79-S | B-208   |     |         |     |         |     |
|----------------------------|--------|----------|-----|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/21/20  | 014 | 8/21/20 | 014 | 8/21/20 | 014  | 8/21/20 | 014 | 8/21/20 | )14 | 8/21/20 | 014 |
| Sample Depth               |        | 3-4 f    | it  | 4-5 f   | ft  | 5-6 f   | it   | 6-7 1   | ft  | 7-8 f   | t   | 8-9 f   | ft  |
| Parameter Name             | RDCSRS | CONC Q ( |     | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 55.4     |     | 75.2    |     | 526     |      | 75.3    |     | 2040    |     | 1820    |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 4.1      |     | 1       | J   | 0.51    | U    | 0.49    | UJ  | 92.7    |     | 122     | J   |
| REDOX POTENTIAL (mV)       | -      | 355      |     | 392     |     | 299     |      | 287     |     | 307     |     | 280     |     |
| pH (S.U>)                  | -      | 7.67     |     | 6.42    |     | 7.89    |      | 7.72    |     | 7.23    |     | 7.92    |     |
| SOLIDS, PERCENT            | -      | 85.6     |     | 83.1    |     | 77.8    |      | 81.7    |     | 82.1    |     | 66.8    |     |
| SULFIDE (mg/kg)            | -      | 4.7      | U   | 4.8     | U   | 5.1     | U    | 4.9     |     | 4.9     | U   | 6       | U   |

| Location                   |        |          |             |         |     | 0       | )79-S | B-209   |     |         |     |         |     |
|----------------------------|--------|----------|-------------|---------|-----|---------|-------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/2   | 014         | 8/19/20 | 014 | 8/19/20 | 014   | 8/19/20 | 014 | 8/19/20 | )14 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 1    | ft          | 4-5 f   | ť   | 5-6 f   | ft    | 6-7 1   | t   | 7-8 f   | t   | 8-91    | ft  |
| Parameter Name             | RDCSRS | CONC Q ( |             | CONC    | Q   | CONC    | Q     | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 43       | J           | 3170    | J   | 9590    | J     | 3300    | J   | 4560    | J   | 12000   | J   |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 9        | 43 J 3<br>9 |         | J   | 294     | J     | 11.5    |     | 112     | J   | 5       | J   |
| REDOX POTENTIAL (mV)       | -      | 269      |             | 295     |     | 294     |       | 197     |     | 217     |     | 77      |     |
| pH (S.U>)                  | -      | 7.48     |             | 7.23    |     | 7.34    |       | 6.6     |     | 7.42    |     | 7.7     |     |
| SOLIDS, PERCENT            | -      | 83       |             | 81.9    |     | 67.1    |       | 72.4    |     | 67.2    |     | 41.3    |     |
| SULFIDE (mg/kg)            | -      | 4.8      | U           | 4.9     | U   | 5.9     | U     | 5.5     | U   | 6       | U   | 15.6    |     |

| Location                   |        |        |                              |         |     | 0       | 79-S | B-210   |     |         |     |         |     |
|----------------------------|--------|--------|------------------------------|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/2 | 014                          | 8/19/20 | )14 | 8/19/20 | 014  | 8/19/20 | 014 | 8/19/20 | )14 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 1  | ft                           | 4-5 1   | t   | 5-6 1   | ť    | 6-7 1   | ť   | 7-8 f   | t   | 8-91    | ft  |
| Parameter Name             | RDCSRS | CONC   | Q                            | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 54.4   | J                            | 15.7    | J   | 16.3    | J    | 45800   | J   | 17000   | J   | 13600   | J   |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 3      | 54.4 J <sup>2</sup><br>3 J ( |         | J   | 1.1     | J    | 4.6     | J   | 1.8     | J   | 2       | J   |
| REDOX POTENTIAL (mV)       | -      | 192    |                              | 235     |     | 244     |      | 189     |     | 79.6    |     | 171     |     |
| pH (S.U>)                  | -      | 8.58   |                              | 7.72    |     | 7.6     |      | 6.85    |     | 7.53    |     | 7.71    |     |
| SOLIDS, PERCENT            | -      | 91.6   |                              | 90.7    |     | 87.2    |      | 44.2    |     | 64.6    |     | 66.2    |     |
| SULFIDE (mg/kg)            | -      | 4.3    | U                            | 4.4     | U   | 4.5     | U    | 8.9     | U   | 6.1     | U   | 5.9     | U   |

| Location                   |        |        |     |         |     | 0       | 79-S | B-211   |     |         |     |         |     |
|----------------------------|--------|--------|-----|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/2 | 014 | 8/19/20 | 014 | 8/19/20 | 014  | 8/19/20 | )14 | 8/19/20 | )14 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 1  | ft  | 4-5 f   | it  | 5-6 f   | it   | 6-7 f   | ť   | 7-8 f   | t   | 8-91    | ft  |
| Parameter Name             | RDCSRS | CONC Q |     | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 135 J  |     | 174     | J   | 965     | J    | 3940    | J   | 5090    | J   | 12900   | J   |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 12.5   | J   | 11.6    |     | 70.9    | J    | 163     |     | 26.5    |     | 0.95    | U   |
| REDOX POTENTIAL (mV)       | -      | 237    |     | 256     |     | 287     |      | 293     |     | 260     |     | 71.6    |     |
| pH (S.U>)                  | -      | 8.1    |     | 8.08    |     | 7.72    |      | 7.07    |     | 8.15    |     | 7.88    |     |
| SOLIDS, PERCENT            | -      | 83     |     | 84.6    |     | 81.3    |      | 78.5    |     | 72.6    |     | 43.5    |     |
| SULFIDE (mg/kg)            | -      | 4.8    | U   | 4.7     | U   | 4.9     | U    | 5       | U   | 5.4     | U   | 8.9     | U   |

| Location                   |        |         |     |         |     |         |     | 079-SB  | -212 |         |     |           |     |         |     |
|----------------------------|--------|---------|-----|---------|-----|---------|-----|---------|------|---------|-----|-----------|-----|---------|-----|
| Sample Date                |        | 8/18/20 | 014 | 8/18/20 | 014 | 8/18/20 | )14 | 8/18/20 | 014  | 8/18/20 | 014 | 8/18/20   | )14 | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 f   | ft  | 4-5 f   | ť   | 5-6 f   | ť   | 6-7 1   | ť    | 7-8 f   | ť   | 7-8 ft (D | UP) | 8-9 f   | ft  |
| Parameter Name             | RDCSRS | CONC    | Q   | CONC    | Q   | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC      | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS      |     | NS      |     | NS      |     | NS      |      | NS      |     | NS        |     | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1.3     | J   | 1.6     | J   | 4.6     | J   | 10.3    | J    | 14.8    | J   | 17.1      | J   | 9.1     | J   |
| REDOX POTENTIAL (mV)       | -      | 341     |     | 464     |     | 382     |     | 148     |      | 229     |     | 258       |     | 223     |     |
| pH (S.U>)                  | -      | 7.05    |     | 4.44    |     | 6.83    |     | 7.24    |      | 7.92    |     | 8.07      |     | 8.05    |     |
| SOLIDS, PERCENT            | -      | 93.9    |     | 92.2    |     | 84.5    |     | 83.6    |      | 80.7    |     | 83.6      |     | 82.5    |     |
| SULFIDE (mg/kg)            | -      | 3.4     | U   | 3.4     | U   | 3.8     | U   | 3.7     | U    | 3.9     | U   | 4         |     | 3.8     | U   |

| Location                   |        |        |     |         |     | 0       | 79-S | B-213   |     |         |     |         |     |
|----------------------------|--------|--------|-----|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/2 | 014 | 8/19/20 | 014 | 8/19/20 | 014  | 8/19/20 | 014 | 8/19/20 | 014 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 1  | ft  | 4-5 f   | ť   | 5-6 f   | ť    | 6-7 1   | ť   | 7-8 1   | ť   | 8-91    | ft  |
| Parameter Name             | RDCSRS | CONC   | Q   | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 82.7   | J   | 38.8    | J   | 150     | J    | 1240    |     | 5750    |     | 2920    |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 12     |     | 5       |     | 21      |      | 125     | J   | 3       | J   | 0.75    | J   |
| REDOX POTENTIAL (mV)       | -      | 225    |     | 252     |     | 277     |      | 279     |     | 201     |     | 210     |     |
| pH (S.U>)                  | -      | 7.72   |     | 7.19    |     | 7.07    |      | 7.48    |     | 6.78    |     | 7.5     |     |
| SOLIDS, PERCENT            | -      | 88     |     | 86.9    |     | 87.4    |      | 69.8    |     | 75.2    |     | 72      |     |
| SULFIDE (mg/kg)            | -      | 4.5    | U   | 4.6     | U   | 4.5     | U    | 5.6     | U   | 5.3     | U   | 5.5     | U   |

| Location                   |        |         |     |        |     | 0       | 79-S | B-214   |     |         |     |         |     |
|----------------------------|--------|---------|-----|--------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/20 | 014 | 8/19/2 | 014 | 8/19/20 | )14  | 8/19/20 | )14 | 8/19/20 | )14 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 f   | ť   | 4-5 1  | ft  | 5-6 f   | t    | 6-7 f   | ť   | 7-8 f   | t   | 8-9 f   | ť   |
| Parameter Name             | RDCSRS | CONC Q  |     | CONC   | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 21.2    |     | 42.5   |     | 7100    |      | 20000   |     | 10000   |     | 1100    |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1.6     | J   | 0.49   | UJ  | 18.3    | J    | 1.1     | J   | 16.3    | J   | 0.65    | J   |
| REDOX POTENTIAL (mV)       | -      | 255     |     | 211    |     | 201     |      | 74.3    |     | 70.5    |     | 49.6    |     |
| pH (S.U>)                  | -      | 7.1     |     | 7.74   |     | 7.69    |      | 7.66    |     | 7.85    |     | 8.02    |     |
| SOLIDS, PERCENT            | -      | 88.7    |     | 83.9   |     | 43.5    |      | 62.6    |     | 47.4    |     | 62.1    |     |
| SULFIDE (mg/kg)            | -      | 6.1     |     | 8.9    |     | 14.7    |      | 6.2     | U   | 69      |     | 21.6    |     |

| Location                   |        |         |     |        |     | 0       | 79-S | B-215   |     |         |     |         |     |
|----------------------------|--------|---------|-----|--------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/18/20 | 014 | 8/18/2 | 014 | 8/18/20 | 014  | 8/18/20 | 014 | 8/18/20 | )14 | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 f   | it  | 4-5 1  | it  | 5-6 f   | ť    | 6-7 1   | it  | 7-8 f   | ť   | 8-91    | ft  |
| Parameter Name             | RDCSRS | CONC    |     |        | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS      |     | NS     |     | NS      |      | NS      |     | NS      |     | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.76    | J   | 0.47   | J   | 91.4    | J    | 19.1    | J   | 23.7    | J   | 6.2     | J   |
| REDOX POTENTIAL (mV)       | -      | 266     |     | 302    |     | 181     |      | 234     |     | 244     |     | 205     |     |
| pH (S.U>)                  | -      | 8.31    |     | 8.36   |     | 7.18    |      | 7.81    |     | 7.51    |     | 8.41    |     |
| SOLIDS, PERCENT            | -      | 91      |     | 89.2   |     | 81.5    |      | 81.3    |     | 82.9    |     | 79.4    |     |
| SULFIDE (mg/kg)            | -      | 4.1     | U   | 4.5    | U   | 4.8     | U    | 5       | U   | 4.6     |     | 40.1    |     |

| Location                   |        |              |          |        |     | 0       | 79-S | B-216   |     |         |     |        |     |
|----------------------------|--------|--------------|----------|--------|-----|---------|------|---------|-----|---------|-----|--------|-----|
| Sample Date                |        | 8/18/20      | 014      | 8/18/2 | 014 | 8/18/20 | 014  | 8/18/20 | 014 | 8/18/20 | 014 | 8/18/2 | 014 |
| Sample Depth               |        | 3-4 1        | ť        | 4-5    | ft  | 5-6 f   | ť    | 6-7 1   | ť   | 7-8 f   | ť   | 8-9    | ft  |
| Parameter Name             | RDCSRS | CONC         | CONC Q ( |        | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC   | Q   |
| CHROMIUM (mg/kg)           | -      | NS           |          | NS     |     | NS      |      | NS      |     | NS      |     | NS     |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | NS<br>0.51 J |          | 3.2    | UJ  | 9.8     | J    | 1.8     | J   | 1.1     |     | 2.9    | UJ  |
| REDOX POTENTIAL (mV)       | -      | 269          |          | 267    |     | 241     |      | 210     |     | 187     |     | 143    |     |
| pH (S.U>)                  | -      | 7.86         |          | 5.88   |     | 7.19    |      | 7.28    |     | 7.85    |     | 8.05   |     |
| SOLIDS, PERCENT            | -      | 91.4         |          | 62.6   |     | 47.3    |      | 66      |     | 82.7    |     | 70.1   |     |
| SULFIDE (mg/kg)            | -      | 4.2          | U        | 6.6    | U   | 12.8    |      | 12.6    |     | 4.8     |     | 11.7   |     |

| Location                   |        |                |     |         |     | 0       | 79-S | B-217   |     |         |     |         |     |
|----------------------------|--------|----------------|-----|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/19/20        | 014 | 8/19/20 | 014 | 8/19/20 | 014  | 8/19/20 | )14 | 8/19/20 | )14 | 8/19/20 | 014 |
| Sample Depth               |        | 3-4 f          | it  | 4-5 f   | it  | 5-6 f   | it   | 6-7 f   | ť   | 7-8 f   | t   | 8-9 f   | ít  |
| Parameter Name             | RDCSRS | CONC Q         |     | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | 31.3           |     | 33      |     | 26.7    |      | 3000    |     | 541     |     | 374     |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 31.3<br>14.8 J |     | 2.4     | J   | 3.6     | J    | 41.9    | J   | 74.1    | J   | 14.1    | J   |
| REDOX POTENTIAL (mV)       | -      | 233            |     | 251     |     | 252     |      | 233     |     | 264     |     | 671     |     |
| pH (S.U>)                  | -      | 7.79           |     | 7.52    |     | 7.87    |      | 8.39    |     | 7.3     |     | 7.59    |     |
| SOLIDS, PERCENT            | -      | 91.1           |     | 84.2    |     | 83      |      | 81.4    |     | 84.1    |     | 82.5    |     |
| SULFIDE (mg/kg)            | -      | 6              |     | 4.7     | U   | 4.8     | U    | 4.9     | U   | 4.6     | U   | 4.8     | U   |

| Location                   |        |         |     |         |     |         |     | 079-SB  | -218 |           |     |         |     |         |     |
|----------------------------|--------|---------|-----|---------|-----|---------|-----|---------|------|-----------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/18/20 | 014 | 8/18/20 | )14 | 8/18/20 | )14 | 8/18/20 | 014  | 8/18/20   | )14 | 8/18/20 | )14 | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 f   | ť   | 4-5 f   | t   | 5-6 f   | t   | 6-7 f   | ť    | 6-7 ft (D | UP) | 7-8 f   | t   | 8-9 f   | ít  |
| Parameter Name             | RDCSRS | CONC    | Q   | CONC    | Q   | CONC    | Q   | CONC    | Q    | CONC      | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS      |     | NS      |     | NS      |     | NS      |      | NS        |     | NS      |     | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.46    | J   | 25.7    |     | 256     | J   | 60.4    | J    | 26.4      |     | 29.1    | J   | 4.4     | J   |
| REDOX POTENTIAL (mV)       | -      | 252     |     | 250     |     | 161     |     | 155     |      | 215       |     | 221     |     | 227     |     |
| pH (S.U>)                  | -      | 8.26    |     | 6.66    |     | 9.04    |     | 9.57    |      | 9.18      |     | 8.3     |     | 7.67    |     |
| SOLIDS, PERCENT            | -      | 90.2    |     | 60.1    |     | 51.9    |     | 78.5    |      | 80        |     | 80.6    |     | 52.2    |     |
| SULFIDE (mg/kg)            | -      | 4.3     | U   | 6.7     |     | 35.6    |     | 28.1    |      | 28.7      |     | 11.8    |     | 21.6    |     |

| Location                   |        |         |     |           |     |         |     | 079-SB  | -219 |         |     |         |     |         |     |
|----------------------------|--------|---------|-----|-----------|-----|---------|-----|---------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/18/20 | 014 | 8/18/20   | 014 | 8/18/20 | 014 | 8/18/20 | 014  | 8/18/20 | 014 | 8/18/20 | )14 | 8/18/20 | 014 |
| Sample Depth               |        | 3-4 f   | ť   | 3-4 ft (D | UP) | 4-5 f   | ť   | 5-6 1   | ft   | 6-7 1   | ť   | 7-8 f   | t   | 8-9 f   | ft  |
| Parameter Name             | RDCSRS | CONC    | Q   | CONC      | Q   | CONC    | Q   | CONC    | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS      |     | NS        |     | NS      |     | NS      |      | NS      |     | NS      |     | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 1       | J   | 5.1       | J   | 156     | J   | 26.8    | J    | 3580    |     | 4150    |     | 24.2    | J   |
| REDOX POTENTIAL (mV)       | -      | 281     |     | 241       |     | 405     |     | 373     |      | 95.6    |     | 95.2    |     | 116     |     |
| pH (S.U>)                  | -      | 8.18    |     | 7.99      |     | 7.46    |     | 7.05    |      | 11.82   |     | 11.9    |     | 9.59    |     |
| SOLIDS, PERCENT            | -      | 84.5    |     | 89.7      |     | 83.3    |     | 59      |      | 43.8    |     | 45.2    |     | 41.1    |     |
| SULFIDE (mg/kg)            | -      | 4.8     | U   | 7.8       |     | 8.2     |     | 6.8     |      | 33.9    |     | 53.4    |     | 119     |     |

| Location                   |        |         |     |         |     |         |     | 079-SB | -220 |         |     |         |     |           |      |
|----------------------------|--------|---------|-----|---------|-----|---------|-----|--------|------|---------|-----|---------|-----|-----------|------|
| Sample Date                |        | 8/18/20 | 014 | 8/18/20 | 014 | 8/18/20 | )14 | 8/18/2 | 014  | 8/18/20 | )14 | 8/18/20 | )14 | 8/18/20   | 014  |
| Sample Depth               |        | 3-4 f   | it  | 4-5 f   | t   | 5-6 f   | t   | 6-7    | ft   | 7-8 f   | t   | 8-9 f   | t   | 8-9 ft (D | OUP) |
| Parameter Name             | RDCSRS | CONC    | Q   | CONC    | Q   | CONC    | Q   | CONC   | Q    | CONC    | Q   | CONC    | Q   | CONC      | Q    |
| CHROMIUM (mg/kg)           | -      | NS      |     | NS      |     | NS      |     | NS     |      | NS      |     | NS      |     | NS        |      |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.43    |     | 0.83    | J   | 29.1    | ſ   | 55.1   | J    | 2.4     |     | 28.4    | J   | 10        |      |
| REDOX POTENTIAL (mV)       | -      | 260     |     | 260     |     | 156     |     | 219    |      | 206     |     | 249     |     | 260       |      |
| pH (S.U>)                  | -      | 7.48    |     | 7.23    |     | 7.09    |     | 7.62   |      | 7.39    |     | 8.04    |     | 8.01      |      |
| SOLIDS, PERCENT            | -      | 91.3    |     | 89.4    |     | 81.4    |     | 81.7   |      | 59      |     | 83.4    |     | 84.3      |      |
| SULFIDE (mg/kg)            | -      | 9.8     |     | 10      |     | 12.4    |     | 19.7   |      | 53.9    |     | 21.6    |     | 21.5      |      |

| Location                   |        |        | 079-SB-221 |        |     |        |     |        |     |         |     |        |     |
|----------------------------|--------|--------|------------|--------|-----|--------|-----|--------|-----|---------|-----|--------|-----|
| Sample Date                |        | 8/19/2 | 014        | 8/19/2 | 014 | 8/19/2 | 014 | 8/19/2 | 014 | 8/19/20 | 014 | 8/19/2 | 014 |
| Sample Depth               |        | 3-4    | ft         | 4-5    | ft  | 5-61   | ft  | 6-7    | ft  | 7-8 1   | ť   | 8-9    | ft  |
| Parameter Name             | RDCSRS | CONC   | Q          | CONC   | Q   | CONC   | Q   | CONC   | Q   | CONC    | Q   | CONC   | Q   |
| CHROMIUM (mg/kg)           | -      | 21.2   |            | 17.8   |     | 151    |     | 121    |     | 279     |     | 257    | J   |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.79   | J          | 1.2    | J   | 7.4    |     | 6.7    | J   | 11      | J   | 25.5   | J   |
| REDOX POTENTIAL (mV)       | -      | 380    |            | 388    |     | 362    |     | 324    |     | 360     |     | 359    |     |
| pH (S.U>)                  | -      | 8.44   |            | 8.16   |     | 8.25   |     | 9.22   |     | 7.89    |     | 8.07   |     |
| SOLIDS, PERCENT            | -      | 91.9   |            | 88.9   |     | 84.9   |     | 83.1   |     | 79.3    |     | 81.3   |     |
| SULFIDE (mg/kg)            | -      | 4.3    | U          | 4.4    | U   | 4.6    | U   | 4.8    | U   | 5       | U   | 4.8    | U   |

| Location                   |        |        |     |         |     |         |     | 079-SB    | -222 |         |     |         |     |         |     |
|----------------------------|--------|--------|-----|---------|-----|---------|-----|-----------|------|---------|-----|---------|-----|---------|-----|
| Sample Date                |        | 8/18/2 | 014 | 8/18/20 | 014 | 8/18/20 | 014 | 8/18/20   | 014  | 8/18/20 | 014 | 8/18/20 | 014 | 8/18/20 | 014 |
| Sample Depth               |        | 3-4    | ft  | 4-5 f   | ť   | 5-6 1   | ft  | 5-6 ft (D | UP)  | 6-7 1   | ft  | 7-8 f   | ťt  | 8-9 f   | ít  |
| Parameter Name             | RDCSRS | CONC   | Q   | CONC    | Q   | CONC    | Q   | CONC      | Q    | CONC    | Q   | CONC    | Q   | CONC    | Q   |
| CHROMIUM (mg/kg)           | -      | NS     |     | NS      |     | NS      |     | NS        |      | NS      |     | NS      |     | NS      |     |
| HEXAVALENT CHROMIUM (mg/kg | 20     | 0.46   | UJ  | 4.1     | J   | 0.49    | U   | 6.1       | J    | 5.7     |     | 4.6     |     | 0.48    | U   |
| REDOX POTENTIAL (mV)       | -      | 232    |     | 277     |     | 290     |     | 267       |      | 344     |     | 309     |     | 265     |     |
| pH (S.U>)                  | -      | 9.29   |     | 7.91    |     | 7.53    |     | 7.33      |      | 6.1     |     | 6.72    |     | 6.35    |     |
| SOLIDS, PERCENT            | -      | 89.6   |     | 89.6    |     | 81.9    |     | 82.3      |      | 85.6    |     | 84.7    |     | 84      |     |
| SULFIDE (mg/kg)            | -      | 25.7   |     | 19      |     | 17      |     | 18.2      |      | 16      |     | 14.3    |     | 4.7     | U   |

Notes:

RDCSRS: NJDEP Residential Direct Contact Soil Remediation Standards [N.J.A.C. 7:26D; last amended 5/7/2012]. Hexavalent chromium criterion of 20 mg/kg based on NJDEP Policy Memorandum (2/8/2007)

#### Bold and shaded concentrations exceed 20 mg/kg

Depths reported in feet below ground surface

CONC: Concentration reported in units noted

Q: Data qualifier assigned by laboratory or data validator

**DUP: Field Duplicate** 

U: Not detected above method detection limit

J: Estimated concentration

NS: Not Sampled

-: No Standard

|            | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|------------|--------------------|----------------|-------------------|
| Boring ID  | 079-SB-A02         | 079-SB-216     |                   |
| Date       | 5/14/1997          | 8/18/2014      |                   |
| 0-2 (ft)   | 9.6                | -              | NA                |
| 2-4 (ft)   | 2.2 U              | -              | 76 90/            |
| 3-4 (ft)   | -                  | 0.51           | 70.876            |
| 4-5 (ft)   | -                  | 3.2 U          | 00.00/            |
| 4-6 (ft)   | 304                | -              | 90.9%             |
| 5-6 (ft)   | -                  | 9.8            | NA                |
| 6-7 (ft)   | -                  | 1.8            | NA                |
| 7-8 (ft)   | -                  | 1.1            | NA                |
| 8-10 (ft)  | 73.9               | -              | 06.1%             |
| 8-9 (ft)   | -                  | 2.9 U          | 90.178            |
| 12-14 (ft) | 2.4 U              | -              | NA                |
| 14-16 (ft) | 2.5 U              | -              | NA                |

|           | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|-----------|--------------------|----------------|-------------------|
| Boring ID | 079-SB-033         | 079-SB-215     |                   |
| Date      | 5/17/2009          | 8/18/2014      |                   |
| 0-1 (ft)  | 1.8 U              | -              | NA                |
| 1-2 (ft)  | 1.8 U              | -              | NA                |
| 2-3 (ft)  | 2.2                | -              | NA                |
| 3-4 (ft)  | -                  | 0.76           | NA                |
| 4-5 (ft)  | 155                | 0.47           | 99.7%             |
| 5-6 (ft)  | 109                | 91.4           | 16.1%             |
| 6-7 (ft)  | 29.2               | 19.1           | 34.6%             |
| 7-8 (ft)  | 21.6               | 23.7           | No Reduction      |
| 8-9 (ft)  | 10.1               | 6.2            | 38.6%             |

|            | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|------------|--------------------|----------------|-------------------|
| Boring ID  | 079-SB-D02         | 079-SB-212     |                   |
| Date       | 10/27/1999         | 8/18/2014      |                   |
| 0-2 (ft)   | 13.2               | -              | NA                |
| 2-4 (ft)   | 33.9               | -              | 06.2%             |
| 3-4 (ft)   | -                  | 1.3            | 90.270            |
| 4-5 (ft)   | -                  | 1.6            | 92.6%             |
| 4-6 (ft)   | 21.7               | -              | NA                |
| 5-6 (ft)   | -                  | 4.6            | 78.8%             |
| 6-7 (ft)   | -                  | 10.3           | 67.1%             |
| 6-8 (ft)   | 31.3               | -              | NA                |
| 7-8 (ft)   | -                  | 17.1           | 45.4%             |
| 8-9 (ft)   | -                  | 9.1            | NA                |
| 10-12 (ft) | 29.8               | -              | NA                |
| 12-14 (ft) | 24.8               | -              | NA                |
| 14-16 (ft) | 2 U                | -              | NA                |
| 16-18 (ft) | 2.9                | -              | NA                |
| 18-20 (ft) | 2 U                | -              | NA                |

|           | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|-----------|--------------------|----------------|-------------------|
| Boring ID | 079-SB-029         | 079-SB-214     |                   |
| Date      | 5/17/2009          | 8/19/2014      |                   |
| 0-1 (ft)  | 23.8               | -              | NA                |
| 1-2 (ft)  | 16.7               | -              | NA                |
| 2-3 (ft)  | 1.1 U              | -              | NA                |
| 3-4 (ft)  | -                  | 1.6            | NA                |
| 4-5 (ft)  | 169                | 0.49 U         | 99.7%             |
| 5-6 (ft)  | 129                | 18.3           | 85.8%             |
| 6-7 (ft)  | -                  | 1.1            | NA                |
| 7-8 (ft)  | -                  | 16.3           | NA                |
| 8-9 (ft)  | 1.4 U              | 0.65           | 53.6%             |

|           | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|-----------|--------------------|----------------|-------------------|
| Boring ID | 079-SB-008         | 079-SB-219     |                   |
| Date      | 7/27/2005          | 8/18/2014      |                   |
| 0-2 (ft)  | 6.5                | -              | NA                |
| 2-3 (ft)  | 50.4               | -              | NA                |
| 3-4 (ft)  | -                  | 5.1            | NA                |
| 4-5 (ft)  | 331                | 156            | 52.9%             |
| 5-6 (ft)  | -                  | 26.8           | NA                |
| 6-7 (ft)  | -                  | 3580           | NA                |
| 7-8 (ft)  | -                  | 4150           | NA                |
| 8-10 (ft) | 2 U                | -              | No Poduction      |
| 8-9 (ft)  | -                  | 24.2           |                   |

|            | Pre-Treatment (RI) |            | Percent Reduction |
|------------|--------------------|------------|-------------------|
| Boring ID  | 079-SB-B02         | 079-SB-217 |                   |
| Date       | 11/20/1998         | 8/19/2014  |                   |
| 0-2 (ft)   | 3.8                | -          | NA                |
| 2-4 (ft)   | 2 U                | -          | No Roduction      |
| 3-4 (ft)   | -                  | 14.8       | NO REDUCTION      |
| 4-5 (ft)   | -                  | 2.4        |                   |
| 4-6 (ft)   | 2 U                | -          | No Reduction      |
| 5-6 (ft)   |                    | 3.6        |                   |
| 6-7 (ft)   | -                  | 41.9       | 96.09/            |
| 6-8 (ft)   | 321                | -          | 00.9%             |
| 7-8 (ft)   | -                  | 74.1       | NA                |
| 8-9 (ft)   | -                  | 14.1       | NA                |
| 10-12 (ft) | 34.8               | -          | NA                |

|            | Pre-Treatment (RI) |            | Percent Reduction |
|------------|--------------------|------------|-------------------|
| Boring ID  | 079-SB-C02         | 079-SB-222 |                   |
| Date       | 5/14/1997          | 8/18/2014  |                   |
| 0-2 (ft)   | 19.3               | -          | NA                |
| 2-4 (ft)   | 6.9                | -          | 02.20/            |
| 3-4 (ft)   | -                  | 0.46 U     | 93.3%             |
| 4-5 (ft)   | -                  | 4.1        | 37.9%             |
| 4-6 (ft)   | 6.6                | -          | NA                |
| 5-6 (ft)   | -                  | 6.1        | 7.6%              |
| 6-7 (ft)   | -                  | 5.7        | NA                |
| 7-8 (ft)   | -                  | 4.6        | NA                |
| 8-10 (ft)  | 41.6               | -          | 09 99/            |
| 8-9 (ft)   | -                  | 0.48 U     | 90.878            |
| 10-12 (ft) | 15.6 U             | -          | NA                |
| 12-14 (ft) | 63.8               | -          | NA                |
| 14-16 (ft) | 6.1                | -          | NA                |

|            | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |  |  |
|------------|--------------------|----------------|-------------------|--|--|
| Boring ID  | 079-SB-B01         | 079-SB-213     |                   |  |  |
| Date       | 5/14/1997          | 8/19/2014      |                   |  |  |
| 0-2 (ft)   | 72.1               | -              | NA                |  |  |
| 2-4 (ft)   | 2.7                | -              | No Poduction      |  |  |
| 3-4 (ft)   | -                  | 12             | NO REDUCTION      |  |  |
| 4-5 (ft)   | -                  | 5              | 99.2%             |  |  |
| 4-6 (ft)   | 601                | -              | NA                |  |  |
| 5-6 (ft)   | -                  | 21             | 96.5%             |  |  |
| 6-7 (ft)   | -                  | 125            | NA                |  |  |
| 7-8 (ft)   | -                  | 3              | NA                |  |  |
| 8-10 (ft)  | 35.1               | -              | 07.0%             |  |  |
| 8-9 (ft)   | -                  | 0.75           | 51.9%             |  |  |
| 12-14 (ft) | 4.4                | -              | NA                |  |  |

|           | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|-----------|--------------------|----------------|-------------------|
| Boring ID | 079-SB-031         | 079-SB-220     |                   |
| Date      | 5/17/2009          | 8/18/2014      |                   |
| 0-1 (ft)  | 1.9 U              | -              | NA                |
| 1-2 (ft)  | 1.9 U              | -              | NA                |
| 3-4 (ft)  | -                  | 0.43           | NA                |
| 4-5 (ft)  | 13.3               | 0.83           | 93.8%             |
| 5-6 (ft)  | 3.8                | 29.1           | No Reduction      |
| 6-7 (ft)  | 57                 | 55.1           | 3.3%              |
| 7-8 (ft)  | -                  | 2.4            | NA                |
| 8-9 (ft)  | 3.2                | 28.4           | No Reduction      |

|            | Pre-Treatment (RI) | Post-Treatment | Percent Reduction |
|------------|--------------------|----------------|-------------------|
| Boring ID  | 079-SB-035         | 079-SB-218     |                   |
| Date       | 5/17/2009          | 8/18/2014      |                   |
| 2-3 (ft)   | 0.92 U             | -              | NA                |
| 3-4 (ft)   | 1.1 U              | 0.46           | 58.2%             |
| 4-5 (ft)   | 4.7                | 25.7           | No Reduction      |
| 5-6 (ft)   | 2770               | 256            | 90.8%             |
| 5-6 A (ft) | 103                | 256            | No Reduction      |
| 6-7 (ft)   | 16.1               | 60.4           | No Reduction      |
| 7-8 (ft)   | -                  | 29.1           | NA                |
| 8-9 (ft)   | -                  | 4.4            | NA                |

Notes:

All results in milligrams per kilogram (mg/kg)

Hexavalent chromium criterion of 20 mg/kg based on NJDEP Policy Memorandum (2/8/2007) Bold and shaded concentrations exceed 20 mg/kg

Depths reported in feet below ground surface

U: Not detected above method detection limit

J: Estimated concentration

NA: Depth intervals do not match, no comparison was made

-: No Standard

ft: Feet below ground surface

Instances where duplicate was collected, the higher of the 2 results is presented.

# TABLE 4Groundwater Sample Results - July 2014Study Area 5 - NJDEP Site 079 Route 440 Vehicle Corp.Jersey City, New Jersey

| Field Sample ID     |       | 079-MW-001-0724 | 14   | 079-MW-001-072 | 2414F | 079-MW-A02-0724 | 414  |   |
|---------------------|-------|-----------------|------|----------------|-------|-----------------|------|---|
| Location            |       | 079-MW-001      |      | 079-MW-00      | 1     | 079-MW-A02      |      |   |
| Lab Sample ID       |       | JB72424-1       |      | JB72424-1F     | -     | JB72424-2       |      |   |
| Sample Date         |       | 7/24/2014       |      | 7/24/2014      |       | 7/24/2014       |      |   |
| Parameter Name      | Units | GWQS            | CONC | Q              | CONC  | Q               | CONC | Q |
| CHROMIUM            | ug/l  | 70              | 4.0  | U              | 4.0   | U               | 5.5  |   |
| HEXAVALENT CHROMIUM | ug/l  | -               | 5.5  | U              | 5.5   | U               | 5.5  | U |

|                     |       | Field Sample ID | 079-MW-A02-072414 | DΡ | 079-MW-A02-07241 | I4F | 079-MW-A02-072414 | <b>IDPF</b> |
|---------------------|-------|-----------------|-------------------|----|------------------|-----|-------------------|-------------|
|                     |       | Location        | 079-MW-A02        |    | 079-MW-A02       |     | 079-MW-A02        |             |
|                     |       | Lab Sample ID   | JB72424-3         |    | JB72424-2F       |     | JB72424-3F        |             |
|                     |       | Sample Date     | 7/24/2014         |    | 7/24/2014        |     | 7/24/2014         |             |
| Parameter Name      | Units | GWQS            | CONC              | Q  | CONC             | Q   | CONC              | Q           |
| CHROMIUM            | ug/l  | 70              | 5.7               |    | 4.5              |     | 4.2               |             |
| HEXAVALENT CHROMIUM | ug/l  | -               | 5.5               | U  | 5.5              | UJ  | 5.5               | UJ          |

Notes:

Q: Qualifier

U: Not detected above method detection limit

J: Estimated concentration

GWQS: Groundwater Quality Standard

-: No Standard

FIGURES



| IS ALL HALL PARIT'S SULE RISK AND RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                | 079–SB–206Date8/21/2014ParameterCR (VI)Depth (ft)                                                                                                                                                                                                                                              | 079-5<br>Date<br>Parameter<br>Depth (ft)<br>3-4<br>4-5<br>5-6<br>6-7<br>7-8<br>8-9        | B-207<br>8/19/2014<br>CR (VI)<br>2.5<br>0.98 U<br>80.4<br>11<br>0.64 U<br><b>127</b>                                |                                                                                |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|
| THIS DOCOMENT BY ANY THISD PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                | 079-SB-205           Date         8/19/2014           Parameter         CR (VI)           Depth (ft)                                                                                                                                                                                           | 079-SB-<br>Date<br>Parameter<br>Depth (ft)<br>0-2<br>0-2 D<br>2-4<br>4-6<br>4-6 D<br>8-10 | 009       7/27/2005       CR (VI)       2 UJ       2 UJ       18.4 J       2 UJ       18.7 J       2 UJ       7.7 J | 079–5<br>Date<br>Parameter<br>Depth (ft)<br>0–2<br>2–4<br>4–6<br>8–10<br>12–14 | SB-B01<br>5/14/199<br>CR (VI)<br>2.7 J<br>601 J<br>35.1 J<br>4.4 J |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 079-SB-A02           Date         5/14/1997           Parameter         CR (VI)           Depth (ft)         0-2           2-4         2.2 UJ           4-6 <b>304 J</b> 8-10         5.3 J           8-10 D <b>73.9 J</b> 12-14         2.4 UJ           14-16         2.5 UJ | 079-SB-216           Date         8/18/2014           Parameter         CR (VI)           Depth (ft)         3-4           4-5         3.2 UJ           5-6         9.8 J           6-7         1.8 J           7-8         1.1           8-9         2.9 UJ                                   |                                                                                           |                                                                                                                     | CB<br>WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW                                     | WWW                                                                |
| 079-SB-203           Date         8/18/2014           Parameter         CR (VI)           Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 079–SB–219           Date         8/18/2014           Parameter         CR (VI)           Depth (ft)                                                                                                                                                                           | 079-SB-008           Date         7/27/2005           Parameter         CR (VI)           Depth (ft)         0-2         6.5 J           2-3 <b>50.4 J</b> 2-3 J           2-3 D <b>38.3 J</b> 4-5           4-5 <b>331 J</b> 8-10         2 UJ                                                | OHU                                                                                       | 12" WATER R M M M M M M M M M M M M M M M M M M                                                                     | DT9-SB-21                                                                      |                                                                    |
| 079-SB-218           Date         8/18/2014           Parameter         CR (VI)           Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 079-SB-035           Date         5/17/2009           Parameter         CR (VI)           Depth (ft)         0.92 U           3-4         1.1 U           4-5         4.7           5-6 <b>2770</b> 103         6-7           6-7 D         16.1                               | 079–SB–012           Date         12/8/2008           Parameter         CR (VI)           Depth (ft)         0.5–1           0.5–1         1           2.5–3         0.93 U           4–4.5         18.1           6–6.5         0.94 U           8.5–9         0.95 U                         |                                                                                           | 25555ED<br>WH<br>12<br>H<br>CB<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W                                         | 24" RCP<br>24" RCP<br>RCP                                                      | 079-SB-218<br>079-SB-218<br>079-SB-035<br>077<br>RAM               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 079–SB–010           Date         7/27/2005           Parameter         CR (VI)           Depth (ft)         0–2         2 UJ           2–3.5         2 UJ         4–6         5.2 J           6–7.5         15.6 J         8–10         2 UJ                                  | 079-SB-034           Date         5/17/2009           Parameter         CR (VI)           Depth (ft)         0-1           1-2         0.92 U           2-3         1.1 U           4-5         2.2           5-6         9.8           6-7         6.9           8-9         10.2             |                                                                                           | PLACE                                                                                                               |                                                                                |                                                                    |
| $\begin{array}{c} 079-SB-B\\ \hline Date \\ 1\\ \hline Parameter\\ \hline Depth (ft)\\ \hline 0-2\\ 2-4\\ \hline 4-6\\ \hline 6-8\\ \hline 6-8\\ \hline 0-8\\ \hline 0-$ | 02     079-SB-217       1/20/1998     Date     8/19       CR (VI)     Depth (ft)       3.8 J     4-5     2       2 UJ     5-6     3       321 J     7-8     7       267 1     0.000     1                                                                                      | 079-SB-204         Date       8/19/207         Parameter       CR (VI)         Pepth (ft)       3-4         9/2014       3-4       1.8         9/2014       3-4       1.8         9/2014       6-7       22.4         6-7       37.7         4.8 J       7-8       17.3         8-9       16.6 |                                                                                           | CARB<br>= = = = = = = = = = = = = = = = = = =                                                                       | RATE<br>I                                                                      |                                                                    |
| 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>34.8 J</b>                                                                                                                                                                                                                                                                  | 079-SB-013           Date         12/8/2008         12/9/20           rameter         CR (VI)         CR (VI)           pth (ft)         1.3         1.3           2-2.5         1.8         1.4           4-4.5         2.3         3.4           0-10.5         362         3.4              | )08                                                                                       | СВ   <br>СВ   <br>СВ   <br>СВ   <br>СВ   <br>СВ                                                                     | I<br>I<br>Zest                                                                 |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                     | MH                                                                             | =2'<br>DEP                                                         |
| BASEMAP SOURCE:<br>REMEDIAL INVESTIGATION REPORT<br>NOVEMBER 1999, PREPARED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATED<br>TETRA TECH.                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                           | REV.                                                                                                                | DATE                                                                           |                                                                    |



| 079-SB | -221      |
|--------|-----------|
| te     | 8/19/2014 |
| neter  | CR (VI)   |
| (ft)   |           |
| 4      | 0.79 J    |
| ·5     | 1.2 J     |
| -6     | 7.4       |
| .7     | 6.7 J     |
| -8     | 11 J      |
| -9     | 25.5 J    |

| 079-SE | -214      |
|--------|-----------|
| ate    | 8/19/2014 |
| meter  | CR (VI)   |
| h (ft) |           |
| -4     | 1.6 J     |
| -5     | 0.49 UJ   |
| -6     | 18.3 J    |
| -7     | 1.1 J     |
| -8     | 16.3 J    |
| -9     | 0.65 J    |

| 079-SB  | -031      |
|---------|-----------|
| Date    | 5/17/2009 |
| ameter  | CR (VI)   |
| th (ft) |           |
| 0-1     | 1.9 UJ    |
| 1-2     | 1.9 UJ    |
| 4-5     | 13.3 J    |
| 5-6     | 3.8 J     |
| 5-7     | 57 J      |
| 3-9     | 3.2 J     |

| 079-SB  | -D02       |
|---------|------------|
| ate     | 10/27/1999 |
| ımeter  | CR (VI)    |
| :h (ft) |            |
| -2      | 13.2 J     |
| -4      | 33.9 J     |
| -6      | 21.7 J     |
| -8      | 31.3 J     |
| -12     | 29.8 J     |
| -14     | 24.8 J     |
| -16     | 2 UJ       |
| -18     | 2.9 J      |
| -20     | 2 UJ       |
| 079-SB  | -030       |
| Date    | 5/17/2009  |
| ameter  | CR (VI)    |
| th (ft) |            |
| D−1     | 0.86 U     |
| 1-2     | 0.89 U     |
| 2-3     | 0.89 U     |
| -3 D    | 1.2        |
| 1-5     | 4.4        |
| 5-6     | 5.2        |
| 5-7     | 11.2       |
| 2 0     | 176        |

| 079-SB- | -201      |
|---------|-----------|
| ate     | 8/18/2014 |
| neter   | CR (VI)   |
| n (ft)  |           |
| -4      | 0.45 UJ   |
| -5      | 10        |
| 5 D     | 20.3 J    |
| -6      | 1.8       |
| -7      | 5.8       |
| -8      | 4.3 J     |
| -9      | 1.3 J     |

| 079-SB | -C02      |
|--------|-----------|
| e      | 5/14/1997 |
| neter  | CR (VI)   |
| (ft)   |           |
| 2      | 19.3 J    |
| 4      | 6.9 J     |
| 6      | 6.6 J     |
| 0      | 41.6 J    |
| 12     | 15.6 UJ   |
| 14     | 63.8 J    |
| 16     | 6.1 J     |
|        |           |

| )79–SB- | -014      |
|---------|-----------|
| е       | 12/8/2008 |
| eter    | CR (VI)   |
| (ft)    |           |
| .5      | 2.1       |
| .5      | 5.3       |
| .5      | 1.6       |
| -7      | 0.87 U    |
| .5      | 12.4      |
| 2.5     | 1.1 U     |
|         |           |

| LEGEND            |                                         |
|-------------------|-----------------------------------------|
| <del>\$</del>     | MONITORING WELL                         |
| •                 | RI BORING LOCATION (1998–2009)          |
|                   | POST-REMEDIATION BORING LOCATION (2014) |
| 0                 | MANHOLE                                 |
| T                 | HYDRANT                                 |
|                   | SIGN                                    |
| -0- 0R ~0_        | UTILITY POLE                            |
| ¢                 | LIGHT POLE                              |
|                   | CATCH BASIN                             |
| 0                 | INLET                                   |
| ₩ or 🔾            | TREE                                    |
| $\bigcirc$ or $+$ | VEGETATION/SHRUB/LANDSCAPED AREA        |
|                   | SITE 079 BOUNDARY                       |
|                   | SANITARY/STORM SEWER                    |
| E                 | ELECTRIC LINE                           |
| ОНU               | OVERHEAD UTILITY LINE                   |
| w                 | WATER LINE                              |
| GAS               | GAS LINE                                |
| <u> </u>          | 138 KV ELECTRIC LINE                    |
| x x               | FENCE LINE                              |
| 10                | GROUND SURFACE ELEVATION CONTOUR LINE   |
|                   | BUILDING/STRUCTURE (ON SITE)            |
|                   | RI DATA (1998–2009)                     |
|                   | POST-REMEDIATION DATA(2014)             |

#### <u>NOTES</u>:

U- COMPOUND NOT DETECTED AT DETECTION LIMIT

- J- ESTIMATED VALUE BELOW REPORTING LIMIT
- D- FIELD DUPLICATE SAMPLE
- Cr(VI)- HEXAVALENT CHROMIUM

#### NOTES:

PREVIOUS RI SOIL BORING LOCATIONS AND DATA (1998/1999) FROM REMEDIAL INVESTIGATION REPORT DATED NOVEMBER 1999, PREPARED BY TETRA TECH; FIGURE 4-3

2005/2008/2009 BORING LOCATIONS COMPLETED BY MACTEC

SAMPLE LOCATIONS WITH TOTAL CHROMIUM DATA FROM IRM REPORT (FEB, 1994). SOME LOCATIONS FROM 1994 IRM MAP SLIGHTLY ADJUSTED TO FIT ACTUAL PROPERTY DIMENSIONS.

ALL SOIL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)

**BOLD AND SHADED** VALUES INDICATES HEXAVALENT CHROMUIM CONCENTRATIONS DETECTED ABOVE THE NJDEP SOIL CLEANUP CRITERIA (20 mg/kg).



FIGURE 2 POST-TREATMENT AND REMEDIAL INVESTIGATION SOIL SAMPLE RESULTS STUDY AREA 5 - NJDEP SITE 079 ROUTE 440 VEHICLE CORP. JERSEY CITY, NEW JERSEY

| 079-MW-      | A02           |                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        |                    |      |
|--------------|---------------|------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|------------------------|--------------------|------|
| Total        | Hexavalent    | Hexavalent       |                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 079-MW-001                       |              |                        | - <u>LEGEN</u>     | 1    |
| nium Chromiu | Chromium      | Chromium<br>ua/l |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total                            | Heravalent   | Hexavalent             | •                  |      |
| (Filtered    | d) ug/l       | (Filtered)       | _                                                                        | Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium                         | Chromium     | Chromium               | 0                  |      |
|              | 10 U<br>10 U  | 10 U<br>10 U     | _                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Filtered)                       | ug/l         | (Filtered)             |                    |      |
|              | 10 U          | 10 U             |                                                                          | 7/8/2010<br>7/8/2010 (Dup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 U                             | 10 U<br>10 U | 10 U<br>10 U           |                    |      |
| 3<br>U       | 50 U<br>10 U  | 50 U<br>10 U     | _                                                                        | 7/24/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0 U                            | 5.5 U        | 5.5 U                  | OR                 | 0    |
| _            | 10 U          | 10 U             |                                                                          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *** *** P** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |              |                        |                    |      |
| 4.5          | 10 U<br>5.5 U | 10 U<br>5.5 U    | POUTE 440                                                                | DHU CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | ų<br>m             |      |
| 4.2          | 5.5 U         | 5.5 U            | STATE HIGHWAY NOC                                                        | CURB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |              |                        |                    |      |
|              |               | × N              | NEW LERSEL SHOW OHU OHU STON                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MH 96" C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :50                              |              |                        | 0                  |      |
|              | T             |                  |                                                                          | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                |              |                        | * OR               |      |
|              |               | UHU              | CB                                                                       | THOUSE THOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                |              |                        | 💭 OR               | *    |
|              |               | . DEPR           | ta C CONC. CURB<br>CONC. CURB<br>O 079-MW-A02<br>DATE REP<br>PARKING LOT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                |              |                        |                    |      |
|              |               | 12" RCP MH       | 24" RCP 8 2000 100                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | ====               |      |
|              |               |                  |                                                                          | × Ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | ———— E ———         |      |
|              |               |                  |                                                                          | * TEEWAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | OHU                |      |
|              |               |                  | RAMP                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e de la companya de l |                                  |              |                        | W                  |      |
|              |               |                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | GAS                |      |
|              |               |                  | HONDA                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | <u> </u>           |      |
|              |               |                  | CAR DEALERSHIP BLDG.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | x x-               |      |
|              |               | ×                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STR X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |              |                        | 10                 | ·    |
|              |               |                  |                                                                          | OHU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        |                    |      |
|              |               | BO               |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EHS CSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |              |                        |                    |      |
|              |               | CAF              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | NOTES:             |      |
|              |               |                  |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | U- Co              | OMF  |
|              |               | CURB             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | ug/L- MI           | ICR  |
|              |               |                  | ASPHALT H                                                                | ×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | DUP- FI            | IELD |
|              |               |                  |                                                                          | INHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | SHADED AN          | ND B |
|              |               |                  | CATE CATE CATE CATE CATE CATE CATE CATE                                  | CIVIC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        | GROUNDWA           | TER  |
|              |               |                  | MORTORANO WAY                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        |                    |      |
|              |               |                  |                                                                          | <br>Amec Foster W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wheeler PROJECT No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3480120313                       | -            | _tt                    |                    | Γ    |
|              |               |                  |                                                                          | - DRAWING: 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180120313-6100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -HGWR-0000                       | amec fo      | ster whe               | eler 🔫             |      |
|              |               |                  |                                                                          | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                        |                    | 1    |
| ۲:           | DATED         |                  |                                                                          | PREPARED/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE: CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>KED/DATE:<br/>0/24/14</pre> | 200 AMERIC   | A INFRASTRUC           | 10 <b>HE. INC.</b> | 1    |
| Т            | TETRA TECH.   |                  | REV. DATE STATUS DRFT CH                                                 | KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S/ Z I/ I T                      | HAMILTO      | JIN, INEW JERSEY 08619 |                    |      |

DRFT CHKD BY BY







## APPENDIX A

**Relevant Correspondence** 



## REC'D FEB 2 4 2012

## State of New Jersey

#### DEPARTMENT OF ENVIRONMENTAL PROTECTION

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor MENT OF ENVIRONMENTAL PRO Site Remediation Program 401 E. State Street, 6<sup>th</sup> Floor Mail Code 401-06 P. O. Box 420 Trenton, New Jersey 08625-0420 Tel. #(609) 292-1250 Fax # (609) 984-6514

Honeywell Inc. Attn: Ms. Maria Kaouris, Project Manager PO Box 1057 Morristown, NJ 07962-1057

#### Approval

Re: Hudson County Chromate - Allied Study Area 5 (Sites 079 – Route 440 Vehicle Corp.) Jersey City, Hudson County SRP PI# G000008789 (Site 079 PI# G000008706) Activity Number Reference: RPC02000 Case Name/Number: 9-20-11 RAR/CSWP

Dear Ms. Maria Kaouris:

The New Jersey Department of Environmental Protection (Department) has completed review of the Remedial Action Report and Confirmatory Sampling Work Plan (dated September 2011) and received on September 21, 2011. The Department has determined that the document is in compliance with the Technical Requirements for Site Remediation, N.J.A.C. 7:26E, and other applicable requirements. The Department hereby approves the document, effective the date of this letter. Per Section 4 (Post-Remediation Monitoring Plan) and 6 (Conclusions and Recommendations), post-remediation soil and groundwater sampling of the treated area will be conducted in approximately three years. A report discussing evaluation of the effectiveness of the treatment will be submitted to the parties for review, on or about February 4, 2015.

The Department requests Honeywell submit copies of this letter to the appropriate parties. If you have any questions regarding this matter, please contact Dave Doyle at (609) 292-2173.



cc: Dave Doyle, NJDEP John Morris, Honeywell BOB MARTIN Commissioner

Date: February 21, 2012

BRUCE J. TERRIS CAROLYN SMITH PRAVLIK KATHLEEN L. MILLIAN

LYNN E. CUNNINGHAM ELISABETH J. LYONS Of Counsel **TERRIS, PRAVLIK & MILLIAN, LLP** 

1121 12TH STREET, N.W. WASHINGTON, D.C. 20005-4632 (202) 682-2100 FAX 202-289-6795 tpminfo@tpmlaw.com

October 26, 2011

ALICIA C. ALCORN ZENIA SANCHEZ FUENTES MICHELLE WEAVER JANE M. LIU GINA TOMASELLI PATRICK A. SHELDON EHSAN TABESH\* TODD A. GLUCKMAN\*

\* Not admitted D.C. Bar

#### VIA ELECTRONIC MAIL

John Morris Remediation Portfolio Director Honeywell International, Inc. 101 Columbia Rd. Morristown, NJ 07962

> Re: Sites 79 and 153 South Consent Decree Site 79 Remedial Action Report and In-Situ Confirmatory Sampling Work Plan

Dear John:

Plaintiffs and their experts have reviewed Honeywell's Site 79 Remedial Action Report ("RAR") and Confirmatory Sampling Work Plan ("Work Plan") that was submitted to NJDEP on September 20, 2011.

Plaintiffs have no further technical comments on the RAR and Work Plan, and hereby approve them.

However, as set forth in plaintiffs' comments dated May 9, 2011, the parties continue to disagree regarding the issue of analytic interference due to the continued presence of sulfides in the soils at the time of future confirmatory sampling. While this disagreement persists, plaintiffs believe that, at this point, the parties can agree to disagree.

Plaintiffs' position remains that the post-treatment sampling and analysis that is to be conducted in 2013 is the framework for any future determinations regarding hexavalent chromium concentrations at Site 79, including any re-delineation or attempt to satisfy the requirements of paragraph 61 of the Consent Decree. Moreover, plaintiffs believe that the Site 79 in-situ confirmatory sampling analytic process should be the same as that agreed to for Study Area 6 North. Therefore, since Honeywell did not incorporate plaintiffs' comments regarding sulfides into the Work Plan, if Honeywell conducts future sampling and analysis that we believe has resulted in invalid data, and Honeywell attempts to use that data to re-delineate the site or to satisfy the requirements of paragraph 61 of the Consent Decree, plaintiffs will object to such use of the data and either bring this issue before the Special Master, if the Special Master is appointed, or move the Court regarding it.

Thank you for your attention to this matter. If you have any questions, please contact Alicia Alcorn at 202-204-8471.

Sincerely, s/ Alicia C. Alcorn John Morris October 26, 2011 Page 2

> Bruce J. Terris Carolyn Smith Pravlik Alicia Clark Alcorn

Counsel for Plaintiffs

cc: Michael Daneker Jeremy Karpatkin Resa Drasin Joseph Karpa

## APPENDIX B

Soil Boring Logs



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685672.64214500000 BORING ID: 079-SB-201 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604193.50308900000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                 | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                                         |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|-----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|--|
|                                                             | 0.0            | _          |                          |              |         |                                                                             |                                        |                                                 |  |
|                                                             |                | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                            | NM                                     |                                                 |  |
|                                                             | -<br>1.0<br>   |            |                          |              |         |                                                                             |                                        |                                                 |  |
|                                                             | - 2.0          | S-1        | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Brown fine to coarse SAND, trace brick, coal, and concrete |                                        |                                                 |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                             |                                        | Samples 079-SB-201-0304<br>at 0830              |  |
|                                                             | - 4.0          |            |                          |              |         | 4.0 - 6.0' FILL: Brown fine to coarse SAND, trace brick and coal            |                                        | Samples 079-SB-201-0405<br>at 0832; DUP at 0835 |  |
|                                                             | - 5.0          |            |                          |              |         |                                                                             |                                        | Samples 079-SB-201-0506<br>at 0840              |  |
|                                                             | - 6.0<br>-     | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Brown fine to coarse SAND;<br>End of boring at 9.0' bgs    |                                        | Samples 079-SB-201-0607<br>at 0845              |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                             |                                        | Samples 079-SB-201-0708<br>at 0850              |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                             |                                        | Samples 079-SB-201-0809<br>at 0855              |  |
|                                                             | 9.0            |            |                          |              |         |                                                                             |                                        |                                                 |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                             |                                        |                                                 |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685586.73871700000 BORING ID: 079-SB-204 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604142.42254400000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                                         |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|----------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|--|--|
|                                                             | 0.0            | Auger      | NA                       | NA           |         |                                                                            | NM                                     |                                                 |  |  |
|                                                             | -              | lagor      |                          |              |         | 0.0 - 2.0' Auger                                                           |                                        |                                                 |  |  |
|                                                             | - 1.0          |            |                          |              |         |                                                                            |                                        |                                                 |  |  |
|                                                             | - 2.0          | S-1        | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Reddish brown fine to coarse SAND                         |                                        |                                                 |  |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                            |                                        | Samples 079-SB-204-0304<br>at 0730              |  |  |
|                                                             | - 4.0          |            |                          |              |         | 4.0 - 5.0' FILL: WOOD                                                      |                                        | Samples 079-SB-204-0405<br>at 0735              |  |  |
|                                                             | — 5.0<br>-     |            |                          |              |         | 5.0 - 6.0' FILL: Black fine to coarse SAND<br>and SILT                     |                                        | Samples 079-SB-204-0506<br>at 0738              |  |  |
|                                                             | 6.0            | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Dark brown fine to coarse SAND; End of boring at 9.0' bgs |                                        | Samples 079-SB-204-0607<br>at 0740; DUP at 0744 |  |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                            |                                        | Samples 079-SB-204-0708<br>at 0750              |  |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                            |                                        | Samples 079-SB-204-0809<br>at 0755              |  |  |
|                                                             |                |            |                          |              |         |                                                                            |                                        |                                                 |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                            |                                        |                                                 |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685549.25514300000 BORING ID: 079-SB-205 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604056.96176300000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                        | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            |            |                          |              |         |                                                                                    |                                        |                                    |  |  |
|                                                             |                | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                                   | NM                                     |                                    |  |  |
|                                                             | -<br>1.0<br>   |            |                          |              |         |                                                                                    |                                        |                                    |  |  |
|                                                             | - 2.0          | S-1        | NA                       | 3.5          |         | 2.0 - 6.0' FILL: Dark brown SANDY SILT,<br>few gravel, trace coal ash; stiff, dry  |                                        |                                    |  |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-205-0304<br>at 0945 |  |  |
|                                                             | 4.0            |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-205-0405<br>at 0947 |  |  |
|                                                             | - 5.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-205-0506<br>at 0949 |  |  |
|                                                             | 6.0            | S-2        | NA                       | 3.0          |         | 6.0 - 7.5' FILL: Dark brown fine to coarse SAND, trace gravel and silt; loose, wet |                                        | Samples 079-SB-205-0607<br>at 0951 |  |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-205-0708<br>at 0953 |  |  |
|                                                             | - 8.0          |            |                          |              |         | 7.5 - 9.0' FILL: Black SILTY CLAY; plastic,<br>wet; End of boring at 9.0' bgs      |                                        | Samples 079-SB-205-0809<br>at 0954 |  |  |
|                                                             |                |            |                          |              |         |                                                                                    |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                                    |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/21/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685574.34832400000 BORING ID: 079-SB-206 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604056.23649900000

| ELEV<br>(FT.)               | DEPTH<br>(FT.)    | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE                   | DESCRIPTION                                 | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-----------------------------|-------------------|------------|--------------------------|--------------|---------------------------|---------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                             | 0.0               |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             |                   | Auger      | NA                       | NA           |                           | 0.0 - 3.0' Auger                            | NM                                     |                                    |  |  |
|                             | -                 |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | - 1.0             |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | -                 |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | - 2.0             |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | -                 |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | - 3.0             | S-1        | NA                       | 3.0          | $\square$                 | 3.0 - 9.0' FILL: Black fine to coarse SAND, |                                        | Samples 079-SB-206-0304<br>at 0930 |  |  |
|                             | -                 |            |                          |              |                           | trace coal ash; End of boring at 9.0 bgs    |                                        |                                    |  |  |
|                             | - 4.0             |            |                          |              | $\square$                 |                                             |                                        | Samplas 070 SP 206 0405            |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        | at 1145                            |  |  |
|                             | -                 |            |                          |              | $\square$                 |                                             |                                        |                                    |  |  |
|                             | - 5.0             |            |                          |              | $\square \square \square$ |                                             |                                        | Samples 079-SB-206-0506            |  |  |
|                             | _                 |            |                          |              | $\square$                 |                                             |                                        | at 1150                            |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | <del>≮_</del> 6.0 | S-2        | NA                       | 3.0          |                           |                                             |                                        | Samples 079-SB-206-0607<br>at 1200 |  |  |
|                             | -                 |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | - 7.0             |            |                          |              |                           |                                             |                                        | Complete 070 CD 000 0700           |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        | at 1205                            |  |  |
|                             | -                 |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             | 8.0               |            |                          |              |                           |                                             |                                        | Samples 079-SB-206-0809            |  |  |
|                             | Ļ                 |            |                          |              |                           |                                             |                                        | at 1210                            |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
|                             |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
| PREPARED BY: KK PAGE 1 OF 1 |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |
| CHECKED BY: JA              |                   |            |                          |              |                           |                                             |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685587.20507100000 BORING ID: 079-SB-207 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604073.49202100000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                          | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|--------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            |            |                          |              |         |                                                                                      |                                        |                                    |  |  |
|                                                             |                | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                                     | NM                                     |                                    |  |  |
|                                                             | -<br>1.0<br>-  |            |                          |              |         |                                                                                      |                                        |                                    |  |  |
|                                                             | — 2.0<br>-     | S-1        | NA                       | 4.0          |         | 2.0 - 6.0' FILL: Dark brown SILTY SAND, some gravel; stiff, dry                      |                                        |                                    |  |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                                      |                                        | Samples 079-SB-207-0304<br>at 0910 |  |  |
|                                                             | 4.0            |            |                          |              |         |                                                                                      |                                        | Samples 079-SB-207-0405<br>at 0912 |  |  |
|                                                             | — 5.0<br>-     |            |                          |              |         |                                                                                      |                                        | Samples 079-SB-207-0506<br>at 0914 |  |  |
|                                                             | 6.0            | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Dark gray GRAVEL, trace sand; loose, wet; End of boring at 9.0' bgs |                                        | Samples 079-SB-207-0607<br>at 0916 |  |  |
|                                                             | 7.0<br>        |            |                          |              |         |                                                                                      |                                        | Samples 079-SB-207-0708<br>at 0918 |  |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                                      |                                        | Samples 079-SB-207-0809<br>at 0920 |  |  |
|                                                             |                |            |                          |              |         |                                                                                      |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                                      |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/21/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685630.21600800000 BORING ID: 079-SB-208 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604081.25635600000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                                          | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            |            |                          |              |         |                                                                                                      |                                        |                                    |  |  |
|                                                             |                | Auger      | NA                       | NA           |         | 0.0 - 3.0' Auger                                                                                     | NM                                     |                                    |  |  |
|                                                             | - 1.0          |            |                          |              |         |                                                                                                      |                                        |                                    |  |  |
|                                                             | - 2.0          |            |                          |              |         |                                                                                                      |                                        |                                    |  |  |
|                                                             | - 3.0          | S-1        | NA                       | 3            |         | 3.0 - 4.0' FILL: Coal fragments, slag                                                                |                                        | Samples 079-SB-208-0304<br>at 1010 |  |  |
|                                                             | - 4.0          |            |                          |              |         | 4.0 - 9.0' FILL: Black fine to coarse , trace<br>coal, brick, and slag; End of boring at 9.0'<br>bgs |                                        | Samples 079-SB-208-0405<br>at 1030 |  |  |
|                                                             | — 5.0<br>-     |            |                          |              |         |                                                                                                      |                                        | Samples 079-SB-208-0506<br>at 1035 |  |  |
| Ξ                                                           | - 6.0          | S-2        | NA                       | 3            |         |                                                                                                      |                                        | Samples 079-SB-208-0607<br>at 1040 |  |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                                                      |                                        | Samples 079-SB-208-0708<br>at 1044 |  |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                                                      |                                        | Samples 079-SB-208-0809<br>at 1050 |  |  |
|                                                             |                |            |                          |              |         |                                                                                                      |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                                                      |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685646.42791200000 BORING ID: 079-SB-209 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604101.37659000000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                      | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|----------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            | Auger      | NA                       | NA           |         |                                                                                  | NM                                     |                                    |  |  |
|                                                             | -              | lagor      |                          |              |         | 0.0 - 2.0' Auger                                                                 |                                        |                                    |  |  |
|                                                             | — 1.0<br>-     |            |                          |              |         |                                                                                  |                                        |                                    |  |  |
|                                                             | - 2.0          | S-1        | NA                       | 4            |         | 2.0 - 6.0' FILL: Dark brown fine to coarse<br>SAND, trace gravel; stiff, dry     | -                                      |                                    |  |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                                  |                                        | Samples 079-SB-209-0304<br>at 1110 |  |  |
|                                                             | 4.0<br>        |            |                          |              |         |                                                                                  |                                        | Samples 079-SB-209-0405<br>at 1111 |  |  |
|                                                             | — 5.0<br>-     |            |                          |              |         |                                                                                  |                                        | Samples 079-SB-209-0506<br>at 1112 |  |  |
|                                                             | 6.0            | S-2        | NA                       | 3            |         | 6.0 - 8.0' FILL: Dark brown coarse SAND<br>and GRAVEL; loose, wet                | -                                      | Samples 079-SB-209-0607<br>at 1113 |  |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                                  |                                        | Samples 079-SB-209-0708<br>at 1114 |  |  |
|                                                             | - 8.0          |            |                          |              |         | 8.0 - 9.0' FILL: Balck CLAYEY SILT; plastic,<br>moist; End of boring at 9.0' bgs |                                        | Samples 079-SB-209-0809<br>at 1115 |  |  |
|                                                             |                |            |                          |              |         |                                                                                  |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                                  |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 8.5' bgs NORTH: 685648.85171400000 BORING ID: 079-SB-210 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604120.95714600000

| ELEV<br>(FT.)                                                  | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                                              | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|----------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|----------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                                | 0.0            | Auger      | NA                       | NA           |         |                                                                                                          | NM                                     |                                    |  |  |
|                                                                | -              | lagor      |                          |              |         | 0.0 - 2.0' Auger                                                                                         |                                        |                                    |  |  |
|                                                                | - 1.0          |            |                          |              |         |                                                                                                          |                                        |                                    |  |  |
|                                                                | - 2.0          | S-1        | NA                       | 4            |         | 2.0 - 6.0' FILL: Reddish brown SANDY SILT,<br>trace gravel; stiff, dry                                   |                                        |                                    |  |  |
|                                                                | - 3.0          |            |                          |              |         |                                                                                                          |                                        | Samples 079-SB-210-0304<br>at 1135 |  |  |
|                                                                | - 4.0          |            |                          |              |         |                                                                                                          |                                        | Samples 079-SB-210-0405<br>at 1136 |  |  |
|                                                                | - 5.0          |            |                          |              |         |                                                                                                          |                                        | Samples 079-SB-210-0506<br>at 1137 |  |  |
|                                                                | 6.0            | S-2        | NA                       | 2.5          |         | 6.0 - 8.5' FILL: Dark gray GRAVEL, some<br>fine to coarse sand; loose, wet; End of boring<br>at 8.5' bgs |                                        | Samples 079-SB-210-0607<br>at 1138 |  |  |
|                                                                | - 7.0          |            |                          |              |         |                                                                                                          |                                        | Samples 079-SB-210-0708<br>at 1139 |  |  |
|                                                                | - 8.0          |            |                          |              |         |                                                                                                          |                                        | Samples 079-SB-210-0809<br>at 1140 |  |  |
|                                                                |                |            |                          |              |         |                                                                                                          |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u><br>CHECKED BY: <u>JA</u><br>PAGE 1 OF 1 |                |            |                          |              |         |                                                                                                          |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 8.5' bgs NORTH: 685686.09749000000 BORING ID: 079-SB-211 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604130.03101900000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                        | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                                   | NM                                     |                                    |  |  |
|                                                             | - 1.0          |            |                          |              |         |                                                                                    |                                        |                                    |  |  |
|                                                             | - 2.0<br>-     | S-1        | NA                       | 4.0          |         | 2.0 - 6.0' FILL: Dark brown SILTY SAND;<br>stiff, dry                              |                                        |                                    |  |  |
|                                                             | - 3.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-211-0304<br>at 1156 |  |  |
|                                                             | 4.0<br>        |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-211-0405<br>at 1157 |  |  |
|                                                             | - 5.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-211-0506<br>at 1158 |  |  |
|                                                             | 6.0            | S-2        | NA                       | 2.5          |         | 6.0 - 8.5' FILL: Dark brown GRAVEL and SAND; loose, wet; End of boring at 8.5' bgs |                                        | Samples 079-SB-211-0607<br>at 1159 |  |  |
|                                                             | - 7.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-211-0708<br>at 1200 |  |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                                    |                                        | Samples 079-SB-211-0809<br>at 1201 |  |  |
| 9.0                                                         |                |            |                          |              |         |                                                                                    |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                                    |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685613.94072700000 BORING ID: 079-SB-213 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604093.67707100000

| ELEV<br>(FT.)                                               | DEPTH<br>(FT.) | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                              | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |
|-------------------------------------------------------------|----------------|------------|--------------------------|--------------|---------|--------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|--|
|                                                             | 0.0            | Auger      | NA                       | NA           |         |                                                                          | NM                                     |                                    |  |  |
|                                                             | _              | Auger      |                          | NA.          |         | 0.0 - 2.0' Auger                                                         |                                        |                                    |  |  |
|                                                             | - 1.0          |            |                          |              |         |                                                                          |                                        |                                    |  |  |
|                                                             | — 2.0<br>-     | S-1        | NA                       | 4.0          |         | 2.0 - 6.0' FILL: Dark brown SANDY SILT,<br>few gravel; medium stiff, dry |                                        |                                    |  |  |
|                                                             | 3.0            |            |                          |              |         |                                                                          |                                        | Samples 079-SB-213-0304<br>at 1029 |  |  |
|                                                             | 4.0<br>        |            |                          |              |         |                                                                          |                                        | Samples 079-SB-213-0405<br>at 1030 |  |  |
|                                                             | - 5.0          |            |                          |              |         |                                                                          |                                        | Samples 079-SB-213-0506<br>at 1031 |  |  |
|                                                             | -              | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Black GRAVEL; loose, wet;<br>End of boring at 9.0' bgs  |                                        | Samples 079-SB-213-0607<br>at 1032 |  |  |
|                                                             | 7.0            |            |                          |              |         |                                                                          |                                        | Samples 079-SB-213-0708<br>at 1033 |  |  |
|                                                             | - 8.0          |            |                          |              |         |                                                                          |                                        | Samples 079-SB-213-0809<br>at 1034 |  |  |
|                                                             |                |            |                          |              |         |                                                                          |                                        |                                    |  |  |
| PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |                |            |                          |              |         |                                                                          |                                        |                                    |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685704.37185600000 BORING ID: 079-SB-214 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604146.22682100000

| ELEV<br>(FT.) | DEPTH<br>(FT.)              | RUN<br>NO.            | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                     | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |  |  |
|---------------|-----------------------------|-----------------------|--------------------------|--------------|---------|-------------------------------------------------|----------------------------------------|------------------------------------|--|--|--|
|               | 0.0                         | Auger                 | NA                       | NA           |         |                                                 | NM                                     |                                    |  |  |  |
|               | -                           |                       |                          |              |         | 0.0 - 2.0' Auger                                |                                        |                                    |  |  |  |
|               | - 1.0                       |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | -                           |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | - 2.0                       | S-1                   | NA                       | 4.0          |         | 2.0 - 4.5' FILL: Beddish brown SANDY SILT:      |                                        |                                    |  |  |  |
|               | -                           |                       |                          |              |         | stiff, dry                                      |                                        |                                    |  |  |  |
|               | - 3.0                       |                       |                          |              |         |                                                 |                                        | Samples 079-SB-214-0304            |  |  |  |
|               | -                           |                       |                          |              |         |                                                 |                                        | at 1223                            |  |  |  |
|               | - 4.0                       |                       |                          |              |         |                                                 |                                        | Samples 079-SB-214-0405            |  |  |  |
|               | -                           |                       |                          |              |         | 4.5 - 9.0' FILL: Dark brown/black CLAYEY        |                                        | at 1224                            |  |  |  |
|               | - 5.0                       |                       |                          |              |         | SILT; plastic, moist; End of boring at 9.0' bgs |                                        | Samples 079-SB-214-0506<br>at 1225 |  |  |  |
|               | -                           |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | - 6.0                       | S-2                   | NA                       | 3.0          |         |                                                 |                                        | Samples 079-SB-214-0607<br>at 1226 |  |  |  |
|               | -                           |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | - 7.0                       |                       |                          |              |         |                                                 |                                        | Samples 079-SB-214-0708<br>at 1227 |  |  |  |
|               | +                           |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | - 8.0                       |                       |                          |              |         |                                                 |                                        | Samples 079-SB-214-0809<br>at 1228 |  |  |  |
|               |                             |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |
|               | └── 9.0                     | L                     | I                        |              |         |                                                 | 1                                      | 1                                  |  |  |  |
| PREPAR        | ED BY: <u>F</u><br>D BY: JA | <u><k< u=""></k<></u> |                          |              |         | PAGE 1 OF 1                                     |                                        |                                    |  |  |  |
|               | CHECKED BY: JA              |                       |                          |              |         |                                                 |                                        |                                    |  |  |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685602.04842000000 BORING ID: 079-SB-215 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604129.40224000000

| ELEV<br>(FT.)    | DEPTH<br>(FT.)                                              | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                   | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |
|------------------|-------------------------------------------------------------|------------|--------------------------|--------------|---------|-------------------------------------------------------------------------------|----------------------------------------|------------------------------------|
|                  | 0.0                                                         | Auger      | NA                       | NA           |         |                                                                               | NM                                     |                                    |
|                  | -                                                           |            |                          |              |         | 0.0 - 2.0' Auger                                                              |                                        |                                    |
|                  | - 1.0                                                       |            |                          |              |         |                                                                               |                                        |                                    |
|                  | - 2.0                                                       | S-1        | NA                       | 4.0          |         | 2.0 - 5.0' FILL: Reddish brown fine to coarse SAND                            |                                        |                                    |
|                  | - 3.0                                                       |            |                          |              |         |                                                                               |                                        | Samples 079-SB-215-0304<br>at 1115 |
|                  | - 4.0                                                       |            |                          |              |         |                                                                               |                                        | Samples 079-SB-215-0405<br>at 1120 |
|                  | — 5.0<br>-                                                  |            |                          |              |         | 5.0 - 6.0' FILL: Black fine to coarse SILTY<br>SAND                           |                                        | Samples 079-SB-215-0506<br>at 1125 |
|                  | - 6.0                                                       | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Dark brown fine to coarse<br>SAND; End of boring at 9.0' bgs |                                        | Samples 079-SB-215-0607<br>at 1128 |
|                  | - 7.0                                                       |            |                          |              |         |                                                                               |                                        | Samples 079-SB-215-0708<br>at 1130 |
|                  | 8.0                                                         |            |                          |              |         |                                                                               |                                        | Samples 079-SB-215-0809<br>at 1133 |
|                  | 9.0                                                         |            |                          |              |         |                                                                               |                                        |                                    |
| PREPAR<br>CHECKE | PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |            |                          |              |         |                                                                               |                                        |                                    |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685546.35153100000 BORING ID: 079-SB-216 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604086.87463300000

| ELEV<br>(FT.)    | DEPTH<br>(FT.)                                              | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                 | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |
|------------------|-------------------------------------------------------------|------------|--------------------------|--------------|---------|-----------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|
|                  | 0.0                                                         |            |                          |              |         |                                                                             |                                        |                                    |  |
|                  |                                                             | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                            | NM                                     |                                    |  |
|                  | -<br>1.0<br>-                                               |            |                          |              |         |                                                                             |                                        |                                    |  |
|                  | — 2.0<br>-                                                  | S-1        | NA                       | 4.0          |         | 2.0 - 3.0' FILL: Reddish brown fine to coarse SAND                          | -                                      |                                    |  |
|                  | - 3.0                                                       |            |                          |              |         | 3.0 - 7.0' FILL: Black fine to coarse SILTY<br>SAND                         | -                                      | Samples 079-SB-216-0304<br>at 1150 |  |
|                  | 4.0                                                         |            |                          |              |         |                                                                             |                                        | Samples 079-SB-216-0405<br>at 1155 |  |
|                  | - 5.0                                                       |            |                          |              |         |                                                                             |                                        | Samples 079-SB-216-0506<br>at 1200 |  |
|                  | 6.0                                                         | S-2        | NA                       | 3.0          |         |                                                                             |                                        | Samples 079-SB-216-0607<br>at 1205 |  |
|                  | - 7.0                                                       |            |                          |              |         | 7.0 - 9.0' FILL: Light brown fine to medium SAND; End of boring at 9.0' bgs | -                                      | Samples 079-SB-216-0708<br>at 1210 |  |
|                  | - 8.0                                                       |            |                          |              |         |                                                                             |                                        | Samples 079-SB-216-0809<br>at 1215 |  |
|                  | 9.0                                                         |            |                          |              |         |                                                                             |                                        |                                    |  |
| PREPAR<br>CHECKE | PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |            |                          |              |         |                                                                             |                                        |                                    |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685575.27075200000 BORING ID: 079-SB-217 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604149.30498800000

| ELEV<br>(FT.)    | DEPTH<br>(FT.)                                              | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                                   | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |
|------------------|-------------------------------------------------------------|------------|--------------------------|--------------|---------|-----------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|
|                  | 0.0                                                         |            |                          |              |         |                                                                                               |                                        |                                    |  |
|                  |                                                             | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                                              |                                        |                                    |  |
|                  | - 1.0                                                       |            |                          |              |         |                                                                                               |                                        |                                    |  |
|                  | - 2.0                                                       | S-1        | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Reddish brown SILT, trace gravel, clay,and sand; stiff, dry                  |                                        |                                    |  |
|                  | - 3.0                                                       |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-217-0304<br>at 0835 |  |
|                  | - 4.0                                                       |            |                          |              |         | 4.0 - 7.0' FILL: Dark brown SILT, few sand, trace clay and gravel; stiff, dry                 |                                        | Samples 079-SB-217-0405<br>at 0838 |  |
|                  | - 5.0                                                       |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-217-0506<br>at 0840 |  |
|                  | - 6.0<br>-                                                  | S-2        | NA                       | 3.0          |         |                                                                                               |                                        | Samples 079-SB-217-0607<br>at 0842 |  |
|                  | 7.0                                                         |            |                          |              |         | 7.0 - 9.0' FILL: Brown fine to medium SAND;<br>medium stiff, moist; End of boring at 9.0' bgs |                                        | Samples 079-SB-217-0708<br>at 0845 |  |
|                  | - 8.0                                                       |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-217-0809<br>at 0847 |  |
|                  | 9.0                                                         |            |                          |              |         |                                                                                               |                                        |                                    |  |
| PREPAR<br>CHECKE | PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |            |                          |              |         |                                                                                               |                                        |                                    |  |



## Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685495.95105300000 
 BORING ID:
 079-SB-218

 INSPECTOR:
 T. Giouzelis

 DRILL EQUIP:
 7710 DT

 GW DEPTH:
 6' bgs

 EAST:
 604079.10084900000

| ELEV<br>(FT.) | DEPTH<br>(FT.)                       | RUN<br>NO.     | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE         | DESCRIPTION                                                          | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |
|---------------|--------------------------------------|----------------|--------------------------|--------------|-----------------|----------------------------------------------------------------------|----------------------------------------|------------------------------------|
|               | 0.0                                  |                |                          |              |                 |                                                                      |                                        |                                    |
|               |                                      | Auger          | NA                       | NA           |                 | 0.0 - 2.0' Auger                                                     | NM                                     |                                    |
|               | -<br>1.0<br>-                        |                |                          |              |                 |                                                                      |                                        |                                    |
|               | - 2.0                                | S-1            | NA                       | 4.0          |                 | 2.0 - 3.0' FILL: CONCRETE                                            |                                        |                                    |
|               | - 3.0                                |                |                          |              |                 | 3.0 - 4.5' FILL: Reddish brown fine to coarse SAND                   |                                        | Samples 079-SB-218-0304<br>at 1245 |
|               | 4.0                                  |                |                          |              |                 |                                                                      |                                        | Samples 079-SB-218-0405<br>at 1248 |
|               | 5.0                                  |                |                          |              |                 | 4.5 - 6.0' FILL: Black fine to medium SILT                           |                                        | Samples 079-SB-218-0506<br>at 1250 |
|               | 6.0                                  | S-2            | NA                       | 3.0          |                 | 6.0 - 7.0' FILL: Black SILT                                          |                                        | Samples 079-SB-218-0607<br>at 1255 |
|               | - 7.0                                |                |                          |              |                 | 7.0 - 9.0' FILL: Dark brown fine to medium SAND; End of boring at 9' |                                        | Samples 079-SB-218-0708<br>at 1258 |
|               | 8.0                                  |                |                          |              |                 |                                                                      |                                        | Samples 079-SB-218-0809<br>at 1300 |
|               | 9.0                                  |                |                          |              | $\nabla^{\vee}$ |                                                                      |                                        |                                    |
| PREPARI       | ED BY: <u></u><br>D BY: <u>`&gt;</u> | <u>(K</u><br>A |                          |              |                 | PAGE 1 OF 1                                                          |                                        |                                    |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685498.93611700000 BORING ID: 079-SB-219 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: NA EAST: 604049.10962000000

| ELEV<br>(FT.) | DEPTH<br>(FT.)                     | RUN<br>NO.            | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                   | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                                         |
|---------------|------------------------------------|-----------------------|--------------------------|--------------|---------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
|               | 0.0                                | Auger                 | NA                       | NA           |         | 0.0 - 2.0' Auger                                                              | NM                                     |                                                 |
|               | — 1.0                              |                       |                          |              |         |                                                                               |                                        |                                                 |
|               | -<br>2.0<br>                       | S-1                   | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Reddish brown fine to medium SAND                            | -                                      |                                                 |
|               | - 3.0                              |                       |                          |              |         |                                                                               |                                        | Samples 079-SB-219-0304<br>at 1320; DUP at 1322 |
|               | - 4.0                              |                       |                          |              |         | 4.0 - 6.0' FILL: Black fine to coarse SAND, trace ash/coal                    | -                                      | Samples 079-SB-219-0405<br>at 1325              |
|               | - 5.0                              |                       |                          |              |         |                                                                               |                                        | Samples 079-SB-219-0506<br>at 1330              |
|               | - 6.0                              | S-2                   | NA                       | 3.0          |         | 6.0 - 8.0' FILL: Yellowish brown fine to<br>medium SANDY SILT                 | -                                      | Samples 079-SB-219-0607<br>at 1333              |
|               | - 7.0                              |                       |                          |              |         |                                                                               |                                        | Samples 079-SB-219-0708<br>at 1335              |
|               | 8.0                                |                       |                          |              |         | 8.0 - 9.0' FILL: Dark brown fine to medium<br>SAND; End of boring at 9.0' bgs |                                        | Samples 079-SB-219-0809<br>at 1340              |
|               | 9.0                                |                       |                          |              |         |                                                                               |                                        |                                                 |
| PREPAR        | ED BY: <u>F</u><br>D BY: <u>JA</u> | <u><k< u=""></k<></u> |                          |              |         | PAGE 1 OF 1                                                                   |                                        |                                                 |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685660.13776900000 BORING ID: 079-SB-220 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: 6' bgs EAST: 604151.70027500000

| ELEV<br>(FT.)    | DEPTH<br>(FT.)                     | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                             | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                                         |
|------------------|------------------------------------|------------|--------------------------|--------------|---------|-------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
|                  | 0.0                                | Auger      |                          | NA           |         |                                                                         | NM                                     |                                                 |
|                  | _                                  | lager      |                          | 1.07.1       |         | 0.0 - 2.0' Auger                                                        |                                        |                                                 |
|                  | - 1.0                              |            |                          |              |         |                                                                         |                                        |                                                 |
|                  | - 2.0                              | S-1        | NA                       | 4.0          |         | 2.0 - 5.0' FILL: Reddish brown fine to coarse SAND, trace coal and silt |                                        |                                                 |
|                  | 3.0                                |            |                          |              |         |                                                                         |                                        | Samples 079-SB-220-0304<br>at 1035              |
|                  | - 4.0                              |            |                          |              |         |                                                                         |                                        | Samples 079-SB-220-0405<br>at 1038              |
|                  | - 5.0                              |            |                          |              |         | 5.0 - 6.0' FILL: Black fine to coarse SAND                              | -                                      | Samples 079-SB-220-0506<br>at 1040              |
|                  | 6.0                                | S-2        | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Dark brown fine to coarse                              | -                                      | Samples 079-SB-220-0607                         |
|                  | -                                  |            |                          |              |         | SAND; End of boring at 9.0' bgs                                         |                                        | at 1045                                         |
|                  | - 7.0                              |            |                          |              |         |                                                                         |                                        | Samples 079-SB-220-0708<br>at 1050              |
|                  | - 8.0                              |            |                          |              |         |                                                                         |                                        | Samples 079-SB-220-0809<br>at 1100; DUP at 1101 |
|                  | 9.0                                |            |                          |              |         |                                                                         |                                        |                                                 |
| PREPAR<br>CHECKE | ED BY: <u>F</u><br>D BY: <u>JA</u> | <u>KK</u>  |                          |              |         | PAGE 1 OF 1                                                             |                                        |                                                 |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/19/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685620.61983400000 BORING ID: 079-SB-221 INSPECTOR: K. Kacperowski DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604151.00359900000

| ELEV<br>(FT.)    | DEPTH<br>(FT.)                                              | RUN<br>NO. | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                                                   | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                            |  |
|------------------|-------------------------------------------------------------|------------|--------------------------|--------------|---------|-----------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--|
|                  | 0.0                                                         |            |                          |              |         |                                                                                               |                                        |                                    |  |
|                  |                                                             | Auger      | NA                       | NA           |         | 0.0 - 2.0' Auger                                                                              | NM                                     |                                    |  |
|                  | -<br>1.0<br>                                                |            |                          |              |         |                                                                                               |                                        |                                    |  |
|                  | — 2.0<br>-                                                  | S-1        | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Reddish brown SILT, trace gravel, clay, and sand; stiff, dry                 |                                        |                                    |  |
|                  | - 3.0                                                       |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-221-0304<br>at 0910 |  |
|                  | 4.0                                                         |            |                          |              |         | 4.0 - 7.0' FILL: Dark reddish brown SILT, few sand, trace clay and gravel                     |                                        | Samples 079-SB-221-0405<br>at 0912 |  |
|                  | - 5.0                                                       |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-221-0506<br>at 0915 |  |
|                  | - 6.0<br>-                                                  | S-2        | NA                       | 3.0          |         |                                                                                               |                                        | Samples 079-SB-221-0607<br>at 0917 |  |
|                  | - 7.0                                                       |            |                          |              |         | 7.0 - 9.0' FILL: Brown fine to medium SAND;<br>medium stiff, moist; End of boring at 9.0' bgs |                                        | Samples 079-SB-221-0708<br>at 0920 |  |
|                  | 8.0                                                         |            |                          |              |         |                                                                                               |                                        | Samples 079-SB-221-0809<br>at 0922 |  |
|                  | 9.0                                                         |            |                          |              |         |                                                                                               |                                        |                                    |  |
| PREPAR<br>CHECKE | PREPARED BY: <u>KK</u> PAGE 1 OF 1<br>CHECKED BY: <u>JA</u> |            |                          |              |         |                                                                                               |                                        |                                    |  |



# Honeywell SA-5

PROJECT NO: 3480120313 DATE FINISHED: 8/18/14 DRILLING METHOD: Direct Push COMPLETION DEPTH: 9' bgs NORTH: 685665.56787900000 BORING ID: 079-SB-222 INSPECTOR: T. Giouzelis DRILL EQUIP: 7710 DT GW DEPTH: NE EAST: 604194.99744600000

| ELEV<br>(FT.) | DEPTH<br>(FT.)                     | RUN<br>NO.  | SPT<br>BLOWS<br>PER 0.5' | REC<br>(FT.) | PROFILE | DESCRIPTION                                                              | VOLATILE<br>ORGANIC<br>VAPORS<br>(PPM) | REMARKS                                         |
|---------------|------------------------------------|-------------|--------------------------|--------------|---------|--------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
|               | 0.0                                | Auger       | NA                       | NA           |         | 0.0 - 2.0' Auger                                                         | NM                                     |                                                 |
|               | 1.0                                |             |                          |              |         |                                                                          |                                        |                                                 |
|               | - 2.0                              | S-1         | NA                       | 4.0          |         | 2.0 - 4.0' FILL: Brown fine to coarse SAND, trace brick, coal, and wood  |                                        |                                                 |
|               | - 3.0                              |             |                          |              |         |                                                                          |                                        | Samples 079-SB-222-0304<br>at 0915              |
|               | - 4.0                              |             |                          |              |         | 4.0 - 6.0' FILL: Black fine to coarse SAND, trace ash                    |                                        | Samples 079-SB-222-0405<br>at 0918              |
|               | — 5.0<br>-                         |             |                          |              |         |                                                                          |                                        | Samples 079-SB-222-0506<br>at 0920; DUP at 0924 |
|               | - 6.0                              | S-2         | NA                       | 3.0          |         | 6.0 - 9.0' FILL: Brown fine to coarse SAND;<br>End of boring at 9.0' bgs |                                        | Samples 079-SB-222-0607<br>at 0922              |
|               | 7.0                                |             |                          |              |         |                                                                          |                                        | Samples 079-SB-222-0708<br>at 0930              |
|               | - 8.0                              |             |                          |              |         |                                                                          |                                        | Samples 079-SB-222-0809<br>at 0933              |
|               | 9.0                                |             |                          |              |         |                                                                          |                                        |                                                 |
| PREPAR        | ED BY: <u>I</u><br>D BY: <u>JA</u> | <u>&lt;</u> |                          |              |         | PAGE 1 OF 1                                                              |                                        |                                                 |

## APPENDIX C

Groundwater Sampling Field Logs



| Job Name: | HW SA-5 Site 079 |
|-----------|------------------|

| Grour                                                                         | ndwater                                                 | Sampling                                  | , Form      |                |             | Job N        | umber:    |          |             |            |            |                |         | Well Num | ber:      | 079-            | MW-00  | 1        |
|-------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|-------------|----------------|-------------|--------------|-----------|----------|-------------|------------|------------|----------------|---------|----------|-----------|-----------------|--------|----------|
|                                                                               |                                                         |                                           |             |                |             |              | w         | ELL PURG | ING INFO    | RMATION    |            |                |         |          |           |                 |        |          |
| PURGE V                                                                       | OLUME                                                   |                                           |             |                |             |              |           | PURG     | E METHO     | D          |            |                |         | PUM      | P INTAI   | KE SETTIN       | G      |          |
| Low Flow M                                                                    | ethod:                                                  | ✓                                         |             |                |             |              |           | Bai      | ler - Type: | M          | lonsoon    |                |         |          | Near To   | op 🗖            |        |          |
| 3 to 5 Volum                                                                  | ne Purge I                                              | Method:                                   |             |                |             |              |           | Sul      | bmersible   | 7          | Centr      | ifugal 🗆       |         |          | Cer       | nter 🔽          |        |          |
| Number of V                                                                   | Vell Volur                                              | nes to be                                 | Purged:     |                |             |              |           | E        | Bladder     |            | Peris      | taltic 🗆       |         | Ne       | ar Botto  | m 🗆             |        |          |
| Well Type:                                                                    | N                                                       | lonitor                                   |             | Other          |             |              |           | PURG     | E VOLUM     | E CALCUL   | ATIONS     |                |         |          |           |                 |        |          |
| Well Materia                                                                  | al:                                                     | PVC 🔽                                     | S           | tainless Ste   | el 🗆        | Steel        |           | (        | -           | ) x        |            | <sup>2</sup> X | x       | ##### =  |           | Gallo           | ns     |          |
| Casing Dian                                                                   | neter (D ir                                             | n Inches):                                |             | 4              |             |              |           |          | TD          | WL         | D          | No.            | Volumes |          | Calculate | d Purge Volum   | ne     |          |
| Well Depth                                                                    | (ft BTOC)                                               | 8.7 Purge Water Disposal: Drum Type Other |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
| Screen Inter                                                                  | reen Interval in Feet (BTOC) from to Size               |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               | INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
| Instrument Type: Horiba U-52 Depth to Water: 4.51 Time: 11:08 Date: 7/24/2014 |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
| Serial Numb                                                                   | ber:                                                    | 21090                                     | )           | Depth to B     | ottom of \  | Vell:        | 8.70      |          |             | PID Readir | ng (inside | of Casing)     | :       | 2        | .1        |                 |        |          |
| For Calibration                                                               | Information,                                            | See Instrum                               | ent Calibra | ation Record S | heet Dated: |              | 7/24/2014 |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              | FIEL      | D PARAME | ETER ME     | ASURMEN    | TS         |                |         |          |           |                 |        | ]        |
| Recorded F                                                                    | By:                                                     | EI                                        | ias Bave    | eh             |             | :            | Sampled   | By: E    | Elias Bave  | h          | Pu         | rge Start Ti   | me:     | 11:11    |           |                 |        |          |
|                                                                               | (Sign                                                   | ature)                                    |             | -              |             |              |           | ·        |             |            |            | 3              |         |          |           |                 |        |          |
|                                                                               | Rate                                                    | nH (S                                     | 311.)       | Cond (n        | ns/cm)      | Turbidity    | (NTUs)    | Diss 0a  | (ma/L)      | Temp       | (°C)       | Salinity       | (%)     | Redox (  | (m\/)     | Depth to        | Water  |          |
| Time                                                                          | Ipm                                                     | Peading                                   | Change      | Reading        | Change      | Reading      | Change    | Reading  | (g, =)      | Reading    | ( Change   | Reading        | Change  | Peading  | Change    | (ft)<br>Reading | Change | Comments |
|                                                                               | I gpm                                                   | 0.1 L                                     | Jnit        | 3%             | 6           | 10%          | 6         | 10       | %           | 3%         | 6          | NA             | Change  | 10 m     | V         | 0.31            | ft     |          |
| 11:11                                                                         | 0.2                                                     | 7.44                                      | -           | 5.73           | -           | 0.0          | -         | 0.63     | -           | 24.62      | -          | 0.31           | -       | -200     | -         | 4.57            | -      |          |
| 11:15                                                                         | 0.2                                                     | 7.41                                      | 0.03        | 5.84           | 1.9%        | 0.0          | 0.0%      | 0.42     | 33.3%       | 23.85      | 3.1%       | 0.32           | 0.01    | -203     | 3         | 4.59            | 0.02   |          |
| 11:20                                                                         | 0.2                                                     | 7.39                                      | 0.02        | 5.86           | 0.3%        | 0.0          | 0.0%      | 0.25     | 40.5%       | 23.42      | 1.8%       | 0.32           | 0.00    | -189     | 14        | 4.60            | 0.01   |          |
| 11:25                                                                         | 0.2                                                     | 7.35                                      | 0.04        | 5.82           | 0.7%        | 0.0          | 0.0%      | 0.06     | 76.0%       | 23.09      | 1.4%       | 0.32           | 0.00    | -203     | 14        | 4.61            | 0.01   |          |
| 11:30                                                                         | 0.2                                                     | 7.36                                      | 0.01        | 5.80           | 0.3%        | 0.0          | 0.0%      | 0.03     | 50.0%       | 23.20      | 0.5%       | 0.31           | 0.01    | -206     | 3         | 4.62            | 0.01   |          |
| 11:35                                                                         | 0.2                                                     | 7.38                                      | 0.02        | 5.77           | 0.5%        | 0.0          | 0.0%      | 0.00     | 100.0%      | 23.29      | 0.4%       | 0.31           | 0.00    | -209     | 3         | 4.63            | 0.01   |          |
| 11.40                                                                         | 0.2                                                     | 7.37                                      | 0.01        | 5.76           | 0.2%        | 0.0          | 0.0%      | 0.00     | 0.0%        | 23.25      | 0.2%       | 0.31           | 0.00    | -209     | 0         | 4.66            | 0.03   |          |
| 11:45                                                                         | 0.2                                                     | 7 37                                      | 0.00        | 5.73           | 0.5%        | 0.0          | 0.0%      | 0.00     | 0.0%        | 23 29      | 0.2%       | 0.31           | 0.00    | -211     | 2         | 4 68            | 0.02   |          |
| 11.50                                                                         | 0.2                                                     | 7 37                                      | 0.00        | 5.75           | 0.3%        | 0.0          | 0.0%      | 0.00     | 0.0%        | 23.28      | 0.0%       | 0.31           | 0.00    | -212     | -         | 4 68            | 0.00   |          |
| 11:55                                                                         | Sample                                                  |                                           | 0.00        | 0.10           | 0.070       | 0.0          | 0.070     | 0.00     | 0.070       | 20.20      | 0.070      | 0.01           | 0.00    |          |           | 4.00            | 0.00   |          |
|                                                                               | oampie                                                  |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
|                                                                               |                                                         |                                           |             |                |             |              |           |          |             |            |            |                |         |          |           |                 |        |          |
| Note: > = Grea                                                                | ater Than <                                             | = Less Tha                                | n NM = N    | Not Measured   | EF = Equip  | ment Failure |           |          | <u> </u>    | <u> </u>   | 1          | 1              | 1       |          | 1         |                 | 1      | LI       |

|                      |       | OBSERVATIO                  | NS DURING WELL PURGING |      |
|----------------------|-------|-----------------------------|------------------------|------|
| Total Volume Purged: |       | 3 gallons                   | Odor:                  | None |
| Well Condition:      |       | Good, rainwater around well | Other:                 |      |
| Color of GW:         | Clear |                             |                        |      |
| Sample ID:           |       | 079-MW-001 @ 11.55          | Sample ID:             |      |



| Job Name: | HW SA-5 Site 079 |
|-----------|------------------|
| oob Name. |                  |

| Groundwater Sampling Form Job Number:                                                                            |                      |              |           |               |                        |                  |                           |                             |        | Well Number: 079-MW |       |                | MW-A0           | 2                       |       |                          |       |          |
|------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-----------|---------------|------------------------|------------------|---------------------------|-----------------------------|--------|---------------------|-------|----------------|-----------------|-------------------------|-------|--------------------------|-------|----------|
| WELL PURGING INFORMATION                                                                                         |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING                                                                    |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Low Flow Method:                                                                                                 |                      |              |           |               |                        |                  | Bailer - Type: Monsoon    |                             |        |                     |       |                | Near Top        |                         |       |                          |       |          |
| 3 to 5 Volume Purge Method:                                                                                      |                      |              |           |               |                        |                  | Submersible 🔽 Centrifugal |                             |        |                     |       |                |                 | Center                  |       |                          |       |          |
| Number of Well Volumes to be Purged:                                                                             |                      |              |           |               |                        |                  | Bladder Peristaltic       |                             |        |                     |       |                | Near Bottom     |                         |       |                          |       |          |
| Well Type: Monitor Other Other PURGE VOLUME CALCULATIONS                                                         |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Well Material: PVC 🔽 Stainless Steel 🗆 Steel                                                                     |                      |              |           |               |                        |                  | ( - ) x <sup>2</sup> x x  |                             |        |                     |       | x              | ##### = Gallons |                         |       |                          |       |          |
| Casing Diameter (D in Inches):                                                                                   |                      |              |           |               |                        |                  |                           |                             |        | ne                  |       |                |                 |                         |       |                          |       |          |
| Well Depth (ft BTOC):    13.5      Purge Water Disposal:    Drum      Type    Other                              |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Screen Interval in Feet (BTOC) from to Size                                                                      |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS                                                          |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Instrument Type: Horiba II-52 Depth to Water: 4.37 Time: 9:24 Doto: 7/24/2014                                    |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Serial Number: 21090 Depth to Rottom of Well: 13.5 PID Reading (incide of Casing): NIM                           |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Senai Number. <u>21090</u> Deptil to Bolioni of Well. <u>15.9</u> PID Reading (Inside of Casing): <u>INM</u>     |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| For Calibration Information, see Instrument Calibration Record Sheet Dated: <u>7/24/2014</u>                     |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| FIELD PARAMETER MEASURMENTS                                                                                      |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Recorded By:     Dave Rosenthal     Sampled By:     Elias Bayeh     Purge Start Time:     9:34       (Signature) |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  | Rate                 | <u>рЦ (8</u> | 11)       | Cond (r       | na/om)                 | Turbidity        |                           | Disc O                      | (mg/L) | Tomp                | (*C)  | Solipity       | (0/)            | Bodov                   | (m)/) | Depth to                 | Water |          |
| Time                                                                                                             | Ipm                  | рп (S        | .0.)      | Cond. (ms/cm) |                        | Turbidity (NTUS) |                           | Diss. O <sub>2</sub> (mg/L) |        | Temp (°C)           |       | Salinity (%)   |                 | Redox (mV)              |       | . (ft)                   |       | Comments |
|                                                                                                                  | gpm Reading Change R |              |           | Reading<br>3% | Reading Change Reading |                  |                           | Change Reading Change       |        | Reading Change 3%   |       | Reading Change |                 | Reading Change<br>10 mV |       | Reading Change<br>0.3 ft |       |          |
| 9:35                                                                                                             | 0.2                  | 6.85         | -         | 4.74          | -                      | 192.0            | -                         | 0.08                        | -      | 22.96               | -     | 0.25           | -               | -309                    | -     | 4.97                     | -     |          |
| 9:40                                                                                                             | 0.2                  | 6.88         | 0.03      | 4.77          | 0.6%                   | 136.0            | 29.2%                     | 0.12                        | 50.0%  | 23.86               | 3.9%  | 0.26           | 0.01            | -327                    | 18    | 5.08                     | 0.11  |          |
| 9:45                                                                                                             | 0.2                  | 6.92         | 0.04      | 4.86          | 1.9%                   | 104.0            | 23.5%                     | 0.05                        | 58.3%  | 23.84               | 0.1%  | 0.26           | 0.00            | -335                    | 8     | 5.24                     | 0.16  |          |
| 9:50                                                                                                             | 0.2                  | 6.95         | 0.03      | 4.96          | 2.1%                   | 81.6             | 21.5%                     | 0.03                        | 40.0%  | 22.90               | 3.9%  | 0.27           | 0.01            | -341                    | 6     | 5.49                     | 0.25  |          |
| 9:55                                                                                                             | 0.2                  | 7.00         | 0.05      | 5.14          | 3.6%                   | 39.7             | 51.3%                     | 0.02                        | 33.3%  | 21.80               | 4.8%  | 0.28           | 0.01            | -355                    | 14    | 5.83                     | 0.34  |          |
| 10:00                                                                                                            | 0.2                  | 7.02         | 0.02      | 5.21          | 1.4%                   | 32.2             | 18.9%                     | 0.00                        | 100.0% | 21.42               | 1.7%  | 0.28           | 0.00            | -360                    | 5     | 5.84                     | 0.01  |          |
| 10:05                                                                                                            | 0.2                  | 7.03         | 0.01      | 5.24          | 0.6%                   | 28.5             | 11.5%                     | 0.00                        | 0.0%   | 21.08               | 1.6%  | 0.28           | 0.00            | -368                    | 8     | 5.80                     | 0.04  |          |
| 10.10                                                                                                            | 0.2                  | 7.08         | 0.05      | 5.21          | 0.6%                   | 27.2             | 5%                        | 0.00                        | 0.0%   | 21.00               | 0.4%  | 0.28           | 0.00            | -376                    | 8     | 5.77                     | 0.03  |          |
| 10:15                                                                                                            | 0.2                  | 7.05         | 0.03      | 5.23          | 0.4%                   | 25.1             | 8%                        | 0.00                        | 0.0%   | 20.91               | 0.4%  | 0.28           | 0.00            | -380                    | 4     | 5.78                     | 0.01  |          |
| 10:10                                                                                                            | 0.2                  | 7.06         | 0.01      | 5 21          | 0.4%                   | 25.4             | 1%                        | 0.00                        | 0.0%   | 20.88               | 0.1%  | 0.28           | 0.00            | -382                    | 2     | 5 78                     | 0.00  |          |
| 10:20                                                                                                            | 0.2<br>Sample        | 7.00         | 0.01      | 5.21          | 0.478                  | 23.4             | 170                       | 0.00                        | 0.078  | 20.00               | 0.178 | 0.20           | 0.00            | -302                    | 2     | 5.70                     | 0.00  |          |
| 10.25                                                                                                            | Sample               |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
|                                                                                                                  |                      |              |           |               |                        |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |
| Note: > = G                                                                                                      | reater Than          | < = Less Tha | an NM = 1 | Not Measured  | EF = Eauir             | ment Failure     | 1                         |                             | 1      | L,                  |       | 1              |                 |                         | I     | 1                        |       |          |
| -                                                                                                                |                      |              | -         |               | 1-1                    |                  |                           |                             |        |                     |       |                |                 |                         |       |                          |       |          |

|                   |       | 0                             | BSERVATIONS DURING WELL PURGING |
|-------------------|-------|-------------------------------|---------------------------------|
| Total Volume Purg | ed:   | 3 gallons                     | Odor:                           |
| Well Condition:   |       | Poor no cap, dirt around well | Other:                          |
| Color of GW:      | Clear |                               |                                 |
| Sample ID:        |       | 079-MW-A02 @ 10:25            | Sample ID:                      |

Sulfurous

079-MW-A02DP @ 10:30

## APPENDIX D

Laboratory Analytical Data/Electronic Data Deliverables (Compact Disk)

## APPENDIX E

Data Validation Reports (Compact Disk)